ON 4-MANIFOLDS CROSS I

DAVID G. WRIGHT

Abstract. In this note we set forth conditions under which for a given 4-manifold M there exist a countably infinite number of 4-manifolds M_i such that $\pi_1(Bd M_i)$ are distinct indecomposable groups and each $M_i \times I$ is homeomorphic with $M \times I$.

1. Introduction. Poenaru [6] and Mazur [4] have each shown that there exists a compact 4-manifold M such that $M \times I$ is homeomorphic with $B^4 \times I$, but M is not homeomorphic with B^4. In this note we set forth conditions under which for a given 4-manifold M there exist a countably infinite number of 4-manifolds M_i such that $\pi_1(Bd M_i)$ are distinct indecomposable groups and each $M_i \times I$ is homeomorphic with $M \times I$. An interesting aspect of this note is that we never have to compute a fundamental group.

We express our indebtedness to D. R. McMillan, Jr. for discussions.

2. Definitions and notations. We let I, B^n, E^n and S^n denote the interval $[-1,1]$, the n-ball $[-1,1]^n$, Euclidean n-space, and the n-sphere respectively. If M is an n-manifold, then IntM and BdM will denote the interior and boundary of M. The closure of a subset A of a topological space will be represented by $\text{Cl}A$. We recall that a 3-manifold is irreducible if every embedded S^2 bounds a B^3. Let F be a surface in a 3-manifold M. If F is not a 2-sphere, then it is called incompressible in M if every simple closed curve on F which bounds an (open) disk in $M - F$ also bounds a disk in F.

Theorem. Suppose M is a compact 4-manifold which is obtained from the 4-manifold N by adding a 2-handle H. If $\text{Cl}(Bd M - H)$ is an orientable, irreducible 3-manifold with incompressible boundary, then there exists a countably infinite collection of compact 4-manifolds M_i such that:

1. BdM_i is not homeomorphic with BdM_j for $i \neq j$,
2. $\pi_1(Bd M_i)$ is an indecomposable group and not infinite cyclic,
3. $\pi_1(Bd M_i) \neq \pi_1(Bd M_j)$ for $i \neq j$ and, hence, IntM_i is not homeomorphic with IntM_j,
4. $M_i \times I$ is homeomorphic with $M \times I$.

Received by the editors January 2, 1975.

Key words and phrases. Dunce hat, contractible 4-manifolds, homeomorphic under products.

© American Mathematical Society 1976

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Examples of such manifolds are \((B^3 \times S^1) \cup H\) where \(H\) is a 2-handle attached to a solid torus \(T\) in \(\text{Bd} (B^3 \times S^1) = S^2 \times S^1\) such that \(T\) has geometric index at least 2 in \(S^2 \times S^1\).

To insure condition (4) we will need the following lemmas. We define \(id: I \to I\) to be the identity map.

Lemma 1. Let \(T_1, T_2 \subset \text{Int} B^3\) be solid tori. Then there exists a homeomorphism \(h: T_1 \to T_2\) such that \(h \times id: T_1 \times I \to T_2 \times I\) extends to a homeomorphism \(H: B^3 \times [-2, 2] \to B^3 \times [-2, 2]\) which leaves the boundary of \(B^3 \times [-2, 2]\) pointwise fixed.

Lemma 2. Let \(T_1, T_2 \subset \text{Bd} B^4\) be solid tori. Then there exists a homeomorphism \(h: T_1 \to T_2\) such that \(h \times id: T_1 \times I \to T_2 \times I\) extends to a homeomorphism \(H: B^4 \times I \to B^4 \times I\).

Proof. Lemma 1 follows from well-known unknotting techniques. From Lemma 1 we obtain a homeomorphism \(h: T_1 \to T_2\) such that \(h \times id: T_1 \times I \to T_2 \times I\) extends to a homeomorphism \(f: \text{Bd} (B^4 \times I) \to \text{Bd} (B^4 \times I)\) which in turn can be extended to a homeomorphism \(H: B^4 \times I \to B^4 \times I\).

4. **Construction of the \(M_i\).** We form 4-manifolds \(M_i\) by adding a pseudo 2-handle to \(N\). Let \(H\) be the 2-handle and \(T_i\) be the regular neighborhood of the composite of \(i\) trefoil knots in \(\text{Bd} H\). We set \(T\) to be \(N \cap H\) which is an unknotted solid torus in \(\text{Bd} H\). Let \(h_i: T_i \to T\) be the homeomorphism promised by Lemma 2. Let \(f: T \to N\) be the inclusion map. Then \(M_i = N \cup f_i H\) where \(f_i = f \circ h_i\).

The boundary of \(M_i\) is the union of two irreducible 3-manifolds attached along a torus which is incompressible in each. Hence \(\text{Bd} M_i\) is irreducible.

5. **Proof of the theorem.**

(1) The 3-manifold \(\text{Bd} M_i\) has a Haken number \(3\) (maximal number of disjoint, nonparallel, incompressible surfaces) of at least \(i + 1\) since there exist \(i + 1\) disjoint, nonparallel, incompressible tori in \(\text{Bd} H - T\). Hence we may pick out a subsequence of the \(M_i\) (which we still denote by \(M_i\)) such that for \(i \neq j\), \(\text{Bd} M_i\) and \(\text{Bd} M_j\) have distinct Haken numbers. Hence \(\text{Bd} M_i\) is not homeomorphic with \(\text{Bd} M_j\).

(2) Suppose \(\pi_1 (\text{Bd} M_i)\) is decomposable or infinite cyclic. Then by \(10\) there exists an essential 2-sphere in \(\text{Bd} M_i\). This contradicts the irreducibility of \(\text{Bd} M_i\) and (2) is proved.

(3) Suppose \(\pi_1 (\text{Bd} M_i) = \pi_1 (\text{Bd} M_j)\) for \(i \neq j\). By the sphere theorem \(5\) \(\pi_2 (\text{Bd} M_j) = 0\). Hence by well-known techniques \(8\) there exists a map \(f: \text{Bd} M_i \to \text{Bd} M_j\) which induces an isomorphism on fundamental group. Since \(\text{Bd} M_i\) and \(\text{Bd} M_j\) are irreducible and contain incompressible surfaces, we can apply Waldhausen’s theorem \(9, \text{Theorem 6.1, p. 77}\) to conclude that \(\text{Bd} M_i\) is homeomorphic with \(\text{Bd} M_j\) which is a contradiction.

Since \(\pi_1 (\text{Bd} M_i) \neq \pi_1 (\text{Bd} M_j)\), we conclude \(1\) that \(\text{Int} M_i\) is not homeomorphic with \(\text{Int} M_j\).
(4) We define a homeomorphism \(h: M_i \times I \to M \times I \) by first noting that
\[
M_i \times I = N \times I \cup_{f_i \times \text{id}} H \times I
\]
and
\[
M \times I = N \times I \cup_{f \times \text{id}} H \times I.
\]
We define \(h|N \times I \) to be the identity. By the construction of \(M_i \) the desired homeomorphism is guaranteed.

Proposition. There exists a 4-manifold, namely, \(\text{Bd} (M \times I) \), in which \(M \) and each \(M_i \) can be embedded.

This follows since \(M_i \times \{-1\} \subset \text{Bd} (M \times I) \) which is homeomorphic to \(\text{Bd} (M \times I) \). In fact, the double of each \(M_i \) is homeomorphic with \(\text{Bd} (M \times I) \).

6. **Contractible 4-manifolds.**

Definition. For each ordered \(n \)-tuple of integers \(\beta = (m_1, \ldots, m_n) \) such that \(\Sigma m_i = 1 \), let \(D_{\beta} \) be the contractible 2-complex formed by attaching a disk \(D \) to a circle \(\alpha \) by the formula \(\alpha^{m_1} \alpha^{m_2} \cdots \alpha^{m_n} \). We call \(D_{\beta} \) a generalized dunce hat.

Lemma 3. If \(M \) is an \(n \)-dimensional manifold (\(n \geq 5 \)) with a generalized dunce hat as spine, then \(M \) is an \(n \)-ball.

We first note that a generalized dunce hat can be embedded in \(B^3 \) as a spine. To see this let \(A_1 \) and \(A_2 \) be transverse annuli on a torus \(T \) such that \(A_1 \cap A_2 \) is a disk. Let \(J_1 \) be an arc in \(A_1 \) with endpoints in \(A_1 \cap A_2 \) which goes around \(A_1 \) as described by \(\beta \); i.e., \(J_1 \) first winds around \(A_1 \) \(m_1 \) times, then \(m_2 \) times, etc. This is done in the most obvious manner so that \(J_1 \) can be completed to a simple closed curve \(J \) by connecting the endpoints of \(J_1 \) by an arc that runs around \(A_2 \). Now let \(f: T \to S^1 \) be a map which wraps \(T \) around \(S^1 \) such that the inverse of a point is either \(A_2 \) or a simple closed curve parallel to \(A_2 \). The mapping cylinder \(M_f \) of \(f \) is a solid torus with \(J \) a longitudinal curve of \(M_f \). If care has been taken, \(M_fJ \) is \(D_{\beta} \) minus a disk. However attaching a 2-handle to \(M_f \) along \(J \) yields \(B^3 \).

Since \(D_{\beta} \) can be embedded as a spine of \(B^3 \), by taking products, \(D_{\beta} \) can be embedded in \(B^n \) (\(n \geq 3 \)) as a spine. However by Price [7], [2, Lemma 2] there is only one way to embed \(D_{\beta} \) in \(E^n \) (\(n \geq 5 \)). Hence our lemma follows.

We are now in a position to prove Glaser's theorem [2] which states that there are uncountably many distinct contractible open 4-manifolds.

Let \(M \) be the 4-manifold \(M \) which is \(B^3 \times S^1 \) plus a 2-handle attached to a solid torus in \(\text{Bd} (B^3 \times S^1) \) which has algebraic index 1 and geometric index not equal to 1. The manifold \(M \) has a generalized dunce hat as a spine. The proof of this fact is similar to the proof of [11, Theorem 5]. Hence \(M \times I \) is homeomorphic with \(B^4 \).

Now the theorem applied to the manifold \(M \) yields a countably infinite
collection of manifolds M_i with $\pi_1(\text{Bd } M_i)$ distinct indecomposable groups and not infinite cyclic. The existence of such a collection is the key step in Glaser's proof.

To finish the proof we form infinite sums M_α of the M_i's in uncountably many different ways such that in two different ones M_i occurs more in one than in the other for some i. Since $\pi_1(\text{Bd } M_\alpha) \neq \pi_1(\text{Bd } M_\beta)$ for $\alpha \neq \beta$, $\text{Int } M_\alpha$ is not homeomorphic with $\text{Int } M_\beta$ [1].

REFERENCES

2. L. C. Glaser, Uncountably many contractible open 4-manifolds, Topology 6 (1966), 37–42. MR 34 #5072.

DEPARTMENT OF MATHEMATICS, MICHIGAN STATE UNIVERSITY, EAST LANSING, MICHIGAN 48824

Current address: Department of Mathematics, Utah State University, Logan, Utah 84322