Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the homeomorphisms which satisfy the Poincaré recurrence theorem


Author: Chung Wu Ho
Journal: Proc. Amer. Math. Soc. 58 (1976), 272-276
MSC: Primary 54H20; Secondary 57E05
DOI: https://doi.org/10.1090/S0002-9939-1976-0420670-8
MathSciNet review: 0420670
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that for a large class of spaces, almost all the homeomorphisms of the space do not satisfy the Poincaré Recurrence Theorem. More specifically, let $ X$ be a compact manifold with a nonzero Euler characteristic and $ H(X)$ be the space of all homeomorphisms of $ X$ onto $ X$. $ H(X)$ is given the compact open topology. Then the set of all the homeomorphisms of $ X$ which satisfy the Poincaré Recurrence Theorem is nowhere dense in $ H(X)$.


References [Enhancements On Off] (What's this?)

  • [1] C. Carathéodory, Über den Wiederkehrsatz von Poincaré, Preuss. Akad. Wiss. 34 (1919), 580-584.
  • [2] F. B. Fuller, The existence of periodic points, Ann. of Math. (2) 57 (1953), 229-230. MR 14, 669. MR 0052764 (14:669f)
  • [3] O. Hájek, Homological fixed point theorems. I, II, III, Comment. Math. Univ. Carolinae 5 (1964), 13-31; 85-92; 6 (1965), 157-164. MR 31 #1672; 33 #3292. MR 0195087 (33:3292)
  • [4] B. Halpern, Fixed points for iterates, Pacific J. Math. 25 (1968), 255-275. MR 41 # 1039. MR 0256383 (41:1039)
  • [5] J. G. Hocking and G. S. Young, Topology, Addison-Wesley, Reading, Mass., 1961. MR 23 #A2857. MR 0125557 (23:A2857)
  • [6] E. Hopf, Zwei Sätze über den wahrscheinlichen Verlauf dynamisher Systeme, Math. Ann. 103 (1930), 710-719. MR 1512643
  • [7] R. Kurth, Some remarks on Poincaré's recurrence theorem, Preprints in Mathematics and Mathematical Sciences, no. 32, Southern I11. Univ. at Edwardsville, 1975. MR 0447524 (56:5835)
  • [8] V. V. Nemyckiĭ and V. V. Stepanov, Qualitative theory of differential equations, OGIZ, Moscow, 1947; English transl., Princeton Math. Ser., no. 22, Princeton Univ. Press, Princeton, N. J., 1960. MR 10, 612; 22 #12258. MR 0029483 (10:612h)
  • [9] H. Schubert, Topologie. Eine Einführung, Teubner, Stuttgart, 1964; English transl., Allyn and Bacon, Boston, Mass., 1968. MR 30 #551; 37 #2160. MR 0170313 (30:551)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54H20, 57E05

Retrieve articles in all journals with MSC: 54H20, 57E05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1976-0420670-8
Keywords: Poincaré Recurrence Theorem, Borel measure, recurrent homeomorphism, Euler characteristic, nowhere dense subset
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society