Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Remarks on the classical Banach operator ideals


Authors: J. Diestel and B. Faires
Journal: Proc. Amer. Math. Soc. 58 (1976), 189-196
MSC: Primary 47B05; Secondary 46M05
DOI: https://doi.org/10.1090/S0002-9939-1976-0454701-6
MathSciNet review: 0454701
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Sufficient conditions are given that the $ \lambda $-tensor product of two operators be weakly compact.


References [Enhancements On Off] (What's this?)

  • [1] N. Dunford and J. T. Schwartz, Linear operators. I: General theory, Pure and Appl. Math., vol. 7, Interscience, New York, 1958. MR 22 #8302. MR 0117523 (22:8302)
  • [2] A. Grothendieck, Sur les applications linéaires faiblement compactes d'espaces du type $ C(K)$, Canad. J. Math. 5 (1953), 129-173. MR 15, 438. MR 0058866 (15:438b)
  • [3] -, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. No. 16 (1955). MR 17, 763. MR 0075539 (17:763c)
  • [4] -, Resumé de le théorie mé trique des produits tensoriels topologiques, Bol. Soc. Mat. São Paulo 8 (1956), 1-79.
  • [5] J. R. Holub, Tensor product bases and tensor diagonals, Trans. Amer. Math. Soc. 151 (1970), 563-579. MR 43 #5286. MR 0279564 (43:5286)
  • [6] -, Compactness in topological tensor products and operator spaces, Proc. Amer. Math. Soc. 36 (1972), 398-406. MR 48 #4802. MR 0326458 (48:4802)
  • [7] A. Pełczyński, Projections in certain Banach spaces, Studia Math. 19 (1960), 209-228. MR 23 #A3441. MR 0126145 (23:A3441)
  • [8] -, Banach spaces on which every unconditionally converging operator is weakly compact, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 10 (1962), 641-648. MR 26 #6785. MR 0149295 (26:6785)
  • [9] -, On strictly singular and strictly cosingular operators. I. Strictly singular and strictly cosingular operators in $ C(S)$-spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 13 (1965), 31-36. MR 31 #1563. MR 0177300 (31:1563)
  • [10] -, On strictly singular and strictly cosingular operators. II. Strictly singular and strictly cosingular operators in $ L(v)$-spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 13 (1965), 37-41. MR 31 #1564. MR 0177301 (31:1564)
  • [11] A. Pełczyński and Z. Semadeni, Spaces of continuous functions. III. Spaces $ C(\Omega )$ for $ \Omega $ without perfect subsets, Studia Math. 18 (1959), 211-222. MR 21 #6528. MR 0107806 (21:6528)
  • [12] A. Pietsch, Theorie der Operatorenideale, Friedrich-Schiller-Universität, Jena, 1972. MR 0361822 (50:14267)
  • [13] H. P. Rosenthal, On complemented and quasi-complemented subspaces of quotients of $ C(S)$ for Stonian $ S$, Proc. Nat. Acad. Sci. U.S.A. 60 (1968), 1165-1169. MR 37 #6740. MR 0231185 (37:6740)
  • [14] C. Stegall, Banach spaces whose duals contain $ {l_1}(\Gamma )$ with applications to the study of dual $ {L_1}(\mu )$ spaces (preprint).

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47B05, 46M05

Retrieve articles in all journals with MSC: 47B05, 46M05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1976-0454701-6
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society