SOME APPLICATIONS OF THE STONE-WEIERSTRASS THEOREM TO PLANAR RATIONAL APPROXIMATION

STEVEN MINSKER

Abstract. The Stone-Weierstrass theorem is used to prove two general results about algebras of continuous functions, and each of these yields a necessary and sufficient condition for the planar function algebras \(R(K) \) and \(C(K) \) to be coincident.

We begin with a result which slightly extends the Stone-Weierstrass theorem.

Theorem 1. (Almost selfadjoint algebras are selfadjoint.) Let \(X \) be a compact Hausdorff space, and let \(f \in C(X) \). Suppose \(m \) and \(n \) are relatively prime positive integers. Let \(A \) be the closed subalgebra of \(C(X) \) generated by \(f^m, f^n, \) and the constant functions. Then \(A = \{ g \circ f : g \in C(f(X)) \} \). In particular, if \(f \) separates the points of \(X \), then \(A = C(X) \).

Proof. Let \(K = f(X) \) and let \(B \) be the closed subalgebra of \(C(K) \) generated by \(z^m, z^n, \) and the constant functions. We claim \(B = C(K) \). By the usual Stone-Weierstrass theorem, it suffices to show that \(z \in B \) and \(\bar{z} \in B \). Now \(z^m \in B \) and \(z^n \in B \) imply \((z^m) (z^n)^m \in B \), or \(|z|^{2mn} \in B \). Since the function \(h(u) = u^{1/2mn} \) is uniformly approximable by polynomials on the interval \([0, \|z\|_K^{2mn}] \) and \(B \) is closed, it follows that \(|z| \in B \). Since \((m, n) = 1 \), we can find integers \(a \) and \(b \) with \(am + bn = 1 \). Without loss of generality, we can assume that \(a \geq 0, b \leq 0 \). Then on \(K - \{0\} \) we have

\[
z = z^{am+bn} = (z^m)^a/(z^n)^{-b} = (z^m)^a(z^n)^{-b}/|z|^{-2bn}
\]

and

\[
\bar{z} = z^n/z^{n-1} = \bar{z}^n z^{n-1}/|z|^{2n-2}.
\]

For each \(\epsilon > 0 \), let

\[
h_\epsilon(u) = \begin{cases} 1/\epsilon^{-2bn} & \text{on } [0, \epsilon], \\ 1/\epsilon^{-2bn} & \text{on } [\epsilon, \|z\|_K]. \end{cases}
\]
and let \(p_\varepsilon(u) \) be a polynomial which uniformly approximates \(h_\varepsilon(u) \) within \(\varepsilon \) on the interval \([0, ||z||_K]\). Consider the function \(q_\varepsilon(z) = (z^m)^a (z^n)^{-b} p_\varepsilon(||z||) \). Clearly \(q_\varepsilon \in B \). If \(z_0 \in K \) and \(||z_0|| < \varepsilon \), then

\[
|q_\varepsilon(z_0) - z_0| \leq |q_\varepsilon(z_0)| + |z_0| < \varepsilon^{am-bn}(h_\varepsilon(||z_0||) + \varepsilon) + \varepsilon = 2\varepsilon + \varepsilon^{am-bn+1}.
\]

If \(z_0 \in K \) and \(||z_0|| \geq \varepsilon \), then

\[
|q_\varepsilon(z_0) - z_0| = |(z_0^m)^a (z_0^n)^{-b} \cdot |p_\varepsilon(||z_0||)| - h_\varepsilon(||z_0||)| < \varepsilon||z||^{am-bn}.
\]

Hence

\[
||q_\varepsilon - z||_K \to 0
\]
as \(\varepsilon \to 0 \), and so \(z \in B \). In completely analogous fashion, if we let

\[
\tilde{p}_\varepsilon(u) = \begin{cases}
1/\varepsilon^{2n-2} & \text{on } [0, \varepsilon], \\
1/u^{2n-2} & \text{on } [\varepsilon, ||z||_K],
\end{cases}
\]

let \(\tilde{p}_\varepsilon(u) \) be a polynomial which uniformly approximates \(\tilde{h}_\varepsilon(u) \) within \(\varepsilon \) on the interval \([0, ||z||_K]\), and put \(\tilde{q}_\varepsilon(z) = z^n z^{-n-1} \tilde{p}_\varepsilon(||z||) \), then \(\tilde{q}_\varepsilon \in B \) and \(||\tilde{q}_\varepsilon - z||_K \to 0 \) as \(\varepsilon \to 0 \), so \(z \in B \). This establishes our claim that \(B = C(K) \). Since any \(g \in C(K) \) is thus uniformly approximable on \(K \) by polynomials in \(z^m \) and \(z^n \), it follows that \(g \circ f \) is uniformly approximable on \(X \) by polynomials in \(f^m \) and \(f^n \). Hence \(A \supseteq \{ g \circ f : g \in C(f(X)) \} \). The remaining assertions are obvious.

Corollary. Let \(K \) be a compact subset of the complex plane. Then \(R(K) = C(K) \) iff \(z^n \in R(K) \) for some \(n \in \mathbb{N} \).

Proof. Immediate from the theorem.

Remark. An analysis of the proof of Theorem 1 shows that the closed subalgebra of \(C(X) \) generated by \(f^m \) and \(f^n \) contains both \(f \) and \(f^n \); that is, \(\{ f^m, f^n \} \) and \(\{ f, f^n \} \) generate the same closed subalgebra of \(C(X) \). Consequently, the following extended Stone-Weierstrass theorem holds:

Let \(X \) be a compact Hausdorff space and let \(A \) be a subalgebra of \(C(X) \) such that:

1. if \(x_0 \in X \), then there exists \(f \in A \) with \(f(x_0) \neq 0 \),
2. \(A \) separates the points of \(X \),
3. if \(f \in A \), then \(f^n \in A \) for some \(n \in \mathbb{N} \) depending on \(f \).

Then \(A \) is dense in \(C(X) \).

Theorem 2. Let \(X \) be a compact Hausdorff space, and let \(f \in C(X) \). Let \(\alpha > 0 \). If \(A \) is the subalgebra of \(C(X) \) generated by \(f, |f|^\alpha \), and the constant functions, then \(\text{Re} A \) (i.e., the real parts of functions in \(A \)) is dense in
\{g \circ f: g \in C_\mathbb{R}(f(X))\}. In particular, if f separates the points of X, then A is a dirichlet algebra on X (i.e., Re A is dense in C_\mathbb{R}(X)).

Proof. Let \(K = f(X) \), and let \(B \) be the closed subalgebra of \(C(K) \) generated by \(z, |z|^{\alpha} \), and the constant functions. We claim Re \(B \) is dense in \(C_\mathbb{R}(K) \). As in the proof of Theorem 1, \(|z|^{\alpha} \in B \) implies \(|z| \in B \). If \(j \) and \(k \) are nonnegative integers with \(j \geq k \), then \(\text{Re} (z^j z^k) = \text{Re} (z^{j-k} |z|^{2k}) \in \text{Re} B \), and if \(j < k \), then

\[
\text{Re} (z^j z^k) = \text{Re} (\overline{z^j z^k}) = \text{Re} (z^{-k} |z|^{2j}) \in \text{Re} B.
\]

Analogously, \(\text{Im} (z^j z^k) = \text{Re} (-iz^j z^k) \) implies that \(\text{Im} (z^j z^k) \in \text{Re} B \). By the Stone-Weierstrass theorem, the algebra generated by \(z, \overline{z} \), and the constants is dense in \(C(K) \). The density of \(\text{Re} B \) in \(C_\mathbb{R}(K) \) follows immediately, establishing our claim. Since any \(g \in C_\mathbb{R}(K) \) is thus uniformly approximable on \(K \) by the real parts of polynomials in \(z \) and \(|z|^{\alpha} \), \(g \circ f \) is uniformly approximable on \(X \) by the real parts of polynomials in \(f \) and \(|f|^{\alpha} \). This completes the proof.

Corollary. Let \(K \) be a compact subset of the complex plane. Then \(R(K) = C(K) \) iff \(|z|^{\alpha} \in R(K) \) for some \(\alpha > 0 \).

Proof. By the preceding theorem, \(|z|^{\alpha} \in R(K) \) implies that \(R(K) \) is a dirichlet algebra on \(K \). This in turn implies that every point of \(K \) is a peak point for \(R(K) \). By a theorem of Bishop [1, Theorem 3.3.3], we conclude \(R(K) = C(K) \).

References