THE SUM OF A DIGITADDITION SERIES

KENNETH B. STOLARSKY

Abstract. Let \(B(x) \) be the number of ones in the binary expansion of \(x \). A "digitaddition series" is a sequence \(y_1 < y_2 < y_3 < \ldots \), where \(y_1 \) is a given positive integer and \(y_{n+1} = y_n + B(y_n) \) for \(n = 1, 2, \ldots \). Various questions involving the \(y_m \) are studied; in particular, the asymptotic result \(y_m \sim (m \log m)/(2 \log 2) \) is proved.

1. Introduction. For positive integers \(x \), let \(B(x) \) denote the sum of the digits in the binary expansion of \(x \). For example, the binary expansion of 13 is 1101, so \(B(13) = 3 \). A sequence of integers \(y_1 < y_2 < y_3 < \ldots \) is called a "digitaddition series" if
\[
y_{n+1} = y_n + B(y_n), \quad n = 1, 2, \ldots
\]

Such series have been studied by Kaprekar [7], [11]-[14] and others [1]-[10], [15]-[18]. Much attention [7], [10]-[14], [17]-[18] has been given to self-numbers, the integers that are not of the form \(x + B(x) \). However, the asymptotics of digitaddition series seem to have been neglected. M. Gardner [7] points out (for the corresponding problem in base ten) that no simple formula seems to be known for the sum
\[
S(n) = S(n; y_1) = \sum_{m=1}^{n} y_m.
\]

We prove
\[
S(n) \sim (n^2/4)(\log n)/(\log 2),
\]
and in fact a bit more. We remark that the right side of (1.3) is independent of \(y_1 \). Here \(f(n) \sim g(n) \) has the usual meaning, that \(\lim f(n)/g(n) \to 1 \) as \(n \to \infty \).

We first show that the sequence \(y_m \) grows "slowly" by obtaining a crude upper bound for \(y_m \). Next, we note that if \(x \) is a "typical" integer, then \(B(x) \) is approximately \((\log_2 x)/2\). Thus, since the sequence \(y_m \) grows "slowly", most of its terms must be "typical" integers, and hence \(y_m \) is approximately \(\sum_{x=1}^{m}(\log_2 x)/2 \sim (m \log_2 m)/2 \). To carry out the details we use the inequality
\[
\sum_{j>(T/2)+\lambda} \binom{T}{j} < 2T \exp(-2\lambda^2/T);
\]
see [6, p. 17] or [5].

Received by the editors July 25, 1975.

Key words and phrases. Binary expansion, digitaddition series, self-number.
2. The results. Henceforth, log t shall denote the logarithm of t to the base 2.

Theorem 1.

(2.1) $S(n) = \frac{n^2}{4} \log n + O\{n^2(\log n \log \log n)^{1/2}\}$.

Since

(2.2) $\int x \ln x \, dx = \frac{x^2}{2} \ln x - \frac{x^2}{4} + C$,

Theorem 1 can be deduced easily from the following result.

Theorem 2.

(2.3) $y_m = \frac{m}{2} \log m + O\{m(\log m \log \log m)^{1/2}\}$.

In particular, $y_m \sim \frac{m}{2} \log m$.

3. The proof. We first obtain a crude upper bound on y_m. Iteration of (1.1) yields

(3.1) $y_{m+1} = y_1 + \sum_{k=1}^{m} B(y_k)$.

The trivial bound $B(x) \leq 1 + \lfloor \log x \rfloor$, where $\lfloor z \rfloor$ denotes the greatest integer in z, yields

(3.2) $y_{m+1} \leq y_1 + m + \log(y_1, y_2, \ldots, y_m)$.

The trivial bound $B(x) \leq x$, together with (1.1), yields $y_m \leq 2^my_1$. Thus, from (3.2), we find that

(3.3) $y_{m+1} \leq m^2$

for m sufficiently large, say $m > M$. By (3.4) and (3.2) again, we obtain

(3.4) $y_{m+1} \leq y_1 + m + \log(y_1, \ldots, y_M) + \log(m!)^2 \leq 3m \log m$

for m sufficiently large, say $m \geq m_0$.

We now refine this upper bound. Choose t real so that

(3.5) $\lfloor t/\log t \rfloor = m$.

Then for $m \geq m_0$ we have from (3.4) and (3.5) that

(3.6) $1 \leq y_i \leq y_m \leq 3t$ for $1 \leq i \leq m$.

Next, set $T = 1 + \lfloor \log 3t \rfloor$ and let λ be a positive real number. Define $u = u(\lambda)$ by

(3.7) $u = T/2 + \lambda$.

Let $s = s(t, \lambda)$ denote the number of integers y such that $1 \leq y \leq 3t$ and

(3.8) $B(y) \geq u$.

The number of y such that $0 \leq y \leq 3t$ and $B(y) = j$ is at most $\binom{T}{j}$, so by (1.4) we have
Now choose

\[\lambda = (T/2)^{1/2} \left\{ \log(\log^2 t) \right\}^{1/2}. \]

Thus

\[s < 6t/\log^2 t \]

and from (3.1) we have

\[
y_m < y_1 + u \{ m - 1 - s \} + Ts
\]

\[= y_1 + \left\{ \frac{\log t}{2} + O \left(\{\log t \log \log t\}^{1/2} \right) \right\} \left\{ \frac{t}{\log t} + O \left(\frac{t}{\log^2 t} \right) \right\}.
\]

We conclude that

\[y_m < t/2 + O \left(t(\log t)^{-1/2}(\log \log t)^{1/2} \right). \]

From (3.5) it is easy to obtain

\[m \log m < t < m \log m + O \left(m \log \log m \right). \]

Hence

\[y_m < (m/2) \log m + O \left(m(\log m \log \log m)^{1/2} \right). \]

We now use the same method to obtain a lower bound for \(y_m \). This time define \(u \) by

\[u = T/2 - \lambda \]

and let \(s(s, \lambda) \) be the number of integers \(y \) such that \(1 < y < 3t \) and

\[B(y) < u. \]

Then (note that \(J = (T, T) \)) we have

\[s \leq \sum_{j < u} \left(\begin{array}{c} T \\ j \end{array} \right) < 6t \exp\left\{ -2\lambda^2 / T \right\}. \]

By choosing \(\lambda \) exactly as before, we obtain

\[
y_m \geq u \{ m - 1 - s \}
\]

\[= \left\{ \frac{\log t}{2} + O \left(\{\log t \log \log t\}^{1/2} \right) \right\} \left\{ \frac{t}{\log t} + O \left(\frac{t}{\log^2 t} \right) \right\}.
\]

We conclude from (3.19) and (3.14) that

\[y_m \geq t/2 + O \left(t(\log t)^{-1/2}(\log \log t)^{1/2} \right) \]

and
This completes the proof.

4. Remarks. Theorem 2 cannot be improved to

\begin{equation}
 y_m = \frac{m}{2} \log m + O\left(\frac{\log m \log \log m}{\log \log \log m} \right).
\end{equation}

We also remark that the second difference of y_m is unbounded from below. In fact, the inequality

\begin{equation}
 y_{m+1} - 2y_m + y_{m-1} \leq -\log m + 4 \log \log m
\end{equation}

holds infinitely often. Both of these assertions are easy consequences of the fact that when the digitaddition series goes past $2^n - 1$, the number of ones in the binary representations of the y_m drops precipitously. We omit the details. Much more than the negation of (4.1) is proved below.

Some open questions: (1) Is $y_m - (m/2)\log m/m$ unbounded? (2) Is $B(y_{m+1}) - B(y_m)$ unbounded from above as $m \to \infty$? (3) Does the second difference of a digitaddition sequence attain every integer value infinitely often? It is also of interest to determine whether the answers to these questions depend on the choice of y_1. It is conceivable [2], [3], [8] that for any two digitaddition sequences $y_1 < y_2 < \ldots$ and $y'_1 < y'_2 < \ldots$ there exists an integer k depending only on y_1 and y'_1 such that $y'_{n+k} = y_n$ for n sufficiently large.

In connection with question (1) we remark that the error term of Theorem 2 is in fact $\Omega(m^{1-\epsilon})$ for any $\epsilon > 0$. This was pointed out by Paul Erdős; the main idea of its demonstration which follows is also due to Professor Erdős.

The proof of Theorem 2 is valid, with no essential change, for any recursion of the form

\begin{equation}
 y_{n+1} = y_n + B(y_n) + E(y_n)
\end{equation}

provided $E(x) = O((\log x \log \log x)^{1/2})$. We only need this fact for $E(x) \equiv 1$. For $\epsilon > 0$ and n large, define

$$
 k = \left[n^{-12n^{(1-\epsilon)}} \right] \quad \text{and} \quad m = \left[n^{-12n^{+1}}(1 + n^{-0.1}) \right].
$$

A direct application of Theorem 2 yields

\begin{equation}
 2^n < y_m < y_{1.1m} < 2^{n+1}.
\end{equation}

Thus for $h < .1m$ we have that $y_{m+h} = 2^n + z_h$ where $y_m = 2^n + z_0$ and

\begin{equation}
 z_{h+1} = z_h + B(z_h) + 1 \quad (h \geq 1).
\end{equation}

Assume that Theorem 2 is valid with an error term $O(m^{1-\epsilon})$. Then

\begin{equation}
 y_{m+k} - y_m = ((m + k)/2)\log(m + k) - (m/2)\log m + O(m^{1-\epsilon})
\end{equation}

\begin{equation}
 > (k/2)\log m + O(m^{1-\epsilon})
\end{equation}

\begin{equation}
 = \frac{1}{2} 2^{n^{(1-\epsilon)}} + O(2^{n^{(1-\epsilon)}}n^{-1+\epsilon}).
\end{equation}

But by the theorem itself,
\[y_{m+k} - y_m = z_k = \left(\frac{k}{2}\right)\log k + O\left(k(\log k)^{3/4}\right) \]
\[= \left(\frac{1 - \varepsilon}{2}\right)2^{n(1-\varepsilon)} + O\left(2^{n(1-\varepsilon)n^{-1/4}}\right), \]
and this contradicts (4.7).

In connection with question (3), we remark that if \(y_1 = n \), then the sequence of second differences begins with \(g(n) \), where
\[g(n) = B(n + B(n)) - B(n), \]
and that we have the following

Proposition. Given an integer \(a \), there are infinitely many positive integers \(n \) such that \(g(n) = a \).

Proof. If \(a = 0 \) let \(n = 2^q + 2 \) where \(q \geq 3 \). If \(a \geq 1 \), set \(p = 2^a - 1 \) and \(n = 2^{m_1} + \cdots + 2^{m_{p-1}} + 2^p \) where \(m_1 > m_2 > \cdots > m_{p-1} > p \). If \(a < 0 \) set \(q = |a| + 1 \), \(p = 2^q - q \), \(r = 2q \), and \(n = 2^{m_1} + \cdots + 2^{m_r} + 2^r - 2^q \) where \(m_1 > m_2 > \cdots > m_r > r \).

References

Department of Mathematics, University of Illinois, Urbana, Illinois 61801