Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Fractional integration in Orlicz spaces


Author: Robert Sharpley
Journal: Proc. Amer. Math. Soc. 59 (1976), 99-106
MSC: Primary 46E30; Secondary 26A33
DOI: https://doi.org/10.1090/S0002-9939-1976-0410357-X
MathSciNet review: 0410357
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Fractional integration and convolution results are given for Orlicz spaces using an inequality earlier developed for $ {\Lambda _\alpha }(X)$ spaces which generalize Lorentz $ L(p,q)$ spaces. The extension problem for convolution operators encountered previously by other authors is almost entirely avoided.


References [Enhancements On Off] (What's this?)

  • [1] A. P. Blozinski, On a convolution theorem for $ L(p,q)$ spaces, Trans. Amer. Math. Soc. 164 (1972), 255-265. MR 0415293 (54:3383)
  • [2] D. W. Boyd, The Hilbert transform on rearrangement-invariant spaces, Canad. J. Math. 19 (1967), 599-616. MR 35 #3383. MR 0212512 (35:3383)
  • [3] M. A. Krasnosel'skii and Ja. B. Rutickii, Convex functions and Orlicz spaces, Fizmatgiz, Moscow, 1959; English transl., Noordhoff, Groningen, 1961. MR 21 #5144; 23 #A4016. MR 0126722 (23:A4016)
  • [4] G. G. Lorentz, Some new functional spaces, Ann. of Math. (2) 51 (1950), 37-55. MR 11, 442. MR 0033449 (11:442d)
  • [5] G. G. Lorentz and T. Shimogaki, Majorants for interpolation theorems, Publ. Ramanujan Inst. No. 1 (1968/69), 115-122. MR 43 #954. MR 0275197 (43:954)
  • [6] W. Matuszewska and W. Orlicz, On certain properties of $ \varphi $-functions, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 8 (1960), 439-443. MR 23 #A3454. MR 0126158 (23:A3454)
  • [7] M. Milman and R. C. Sharpley, Convolution theorems for $ {\Lambda _\alpha }(X)$ spaces (preprint).
  • [8] R. O'Neil, Convolution operators and $ L(p,q)$ spaces, Duke Math. J. 30 (1963), 129-142. MR 26 #4193. MR 0146673 (26:4193)
  • [9] -, Fractional integration in Orlicz spaces. I, Trans. Amer. Math. Soc. 115 (1965), 300-328. MR 33 #3087. MR 0194881 (33:3087)
  • [10] R. C. Sharpley, Spaces $ {\Lambda _\alpha }(X)$ and interpolation, J. Functional Analysis 11 (1972), 479-513. MR 0344872 (49:9611)
  • [11] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Math. Ser., no. 30, Princeton Univ. Press, Princeton, N.J., 1970. MR 44 #7280. MR 0290095 (44:7280)
  • [12] L. Y. H. Yap, Some remarks on convolution operators and $ L(p,q)$ spaces, Duke Math. J. 36 (1969), 647-658. MR 40 #3184. MR 0249943 (40:3184)
  • [13] A. Zygmund, Trignometric series, 2nd rev. ed., Cambridge Univ. Press, New York, 1968. MR 38 #4882. MR 0236587 (38:4882)
  • [14] -, Some points in the theory of trigonometric and power series, Trans. Amer. Math. Soc. 36 (1934), pp. 604,609.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46E30, 26A33

Retrieve articles in all journals with MSC: 46E30, 26A33


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1976-0410357-X
Keywords: Fractional integration, convolution, Orlicz spaces, decreasing rearrangement
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society