CYCLICALLY MONOTONE LINEAR OPERATORS

ELIAS S. W. SHIU

ABSTRACT. A linear operator on a complex Hilbert space \mathcal{H} is called n-cyclically monotone if for each sequence $x_0, x_1, \ldots, x_{n-1}, x_n = x_0$ of n elements in \mathcal{H}, $\sum_{j=0}^{n-1} \text{Re}(T_{x_j} x_{j+1}) > 0$. We show that T is n-cyclically monotone if and only if $|\text{Arg}(Tx, x)| < \pi/n$, $\forall x \in \mathcal{H}$. If T_m and T_n are m- and n-cyclically monotone operators, then the spectrum of the product $T_m T_n$ lies in the sector $\{z \in \mathbb{C}: |\text{Arg} z| < \pi/m + \pi/n\}$.

1. Introduction. Let H denote a real Hilbert space with inner product (\cdot,\cdot). The following is a simplified version of [1, Theorem 3]: Let f and f_1 be two continuous (not necessarily linear) functions on H, mapping bounded subsets into bounded subsets, such that (i) f is monotone, i.e., $(f(x) - f(y), x - y) > 0$, $\forall x, y \in H$, (ii) f_1 is tricyclically monotone, i.e., $(f_1(x), x - y) + (f_1(y), y - z) + (f_1(z), z - x) > 0$, $\forall x, y, z \in H$. Then $I + ff_1$ is a homeomorphism.

This paper is motivated by the theorem above and we shall restrict our discussion to the elements in $B(\mathcal{H})$, the set of bounded linear operators on a complex Hilbert space \mathcal{H}. An operator $T \in B(\mathcal{H})$ is called n-cyclically monotone, n an integer greater than one, if for each sequence $x_0, x_1, x_2, \ldots, x_{n-1}, x_n = x_0$ of n points in \mathcal{H}, $\sum_{j=0}^{n-1} \text{Re}(T_{x_j} x_{j+1}) > 0$. A 2-cyclically monotone operator will be called accretive [5, p. 279]. The concept of the cyclically monotone operators was first introduced by R. T. Rockafellar [6]. According to [6], an n-cyclically monotone operator should be called monotone of degree $(n - 1)$; however, we justify our definition with the following theorem: T is n-cyclically monotone if and only if

$$|\text{Arg}(Tx, x)| < \pi/n, \quad \forall x \in \mathcal{H}.$$

In the last section of this paper we show that if T is accretive and T_1 is 3-cyclically monotone, then for each λ in the spectrum of TT_1, $|\lambda| \leq \pi/2 + \pi/3$; consequently $I + TT_1$ is invertible.

2. Notation and preliminaries. Let \mathbb{C}, \mathbb{R} and \mathbb{R}^+ denote the set of complex, real and nonnegative real numbers, respectively. Let Ω, $\Omega_1 \subset \mathbb{C}$, $\Omega \cdot \Omega_1 = \{zz_1: z \in \Omega, z_1 \in \Omega_1\}$; $\text{Cl}(\Omega)$ denotes the closure and $\text{Co}(\Omega)$ the convex hull of Ω. For $\alpha, \beta \in \mathbb{R}$, $0 \leq \beta - \alpha < 2\pi$, $\Sigma(\alpha, \beta)$ denotes the closed sector \{z \in \mathbb{C}: \alpha \leq \arg z \leq \beta\}. For $\alpha \in \mathbb{R}$, $0 \leq \alpha < \pi$, $\Sigma(\alpha)$ denotes the symmetric sector $\Sigma(-\alpha, \alpha)$.

Received by the editors November 21, 1975.

AMS (MOS) subject classifications (1970). Primary 47A10; Secondary 46M05, 47B44, 47H05.

Key words and phrases. Cyclically monotone operators, numerical ranges, tensor products, spectra of products.

\footnote{This work was partially supported by NRC Grant No. A4002.}
For $T \in \mathfrak{B}(\mathcal{K})$, $\Re T = (T + T^*)/2$ and $\Im T = (T - T^*)/2i$; $\sigma(T)$ denotes the spectrum and $W(T)$ the numerical range of T, $W(T) = \{(Tx, x) : \|x\| = 1\}$. T is called nonnegative if $W(T) \subseteq [0, \infty)$. We define $A(T) = \text{Cl}(\{(Tx, x)\})$. Since $A(T) = \mathbb{R}^+ \cdot \text{Cl}(W(T))$ and the numerical range of an operator is convex, either $A(T) = \mathbb{C}$ or $A(T) = \Sigma(\alpha, \beta)$ with $\beta - \alpha \leq \pi$.

If \mathcal{K} is finite dimensional and $0 \in W(T)$, then $A(T)$ coincides with the angular field introduced in [10].

Lemma 1. Let $T, S \in \mathfrak{B}(\mathcal{K})$. If S is invertible, then $A(T) = A(S^*TS)$.

Lemma 2 [5, VI-§1.2]. Let $T \in \mathfrak{B}(\mathcal{K})$ and $\alpha \in [0, \pi/2)$; then the following three statements are equivalent:

1. $A(T) \subseteq \Sigma(\alpha)$;
2. $|\langle \Im Tx, x \rangle| \leq \tan(\alpha)|\langle \Re Tx, x \rangle|$, $\forall x \in \mathcal{K}$;
3. $|\langle \Im Ty, y \rangle| \leq \tan(\alpha)|\langle \Re Tx, x \rangle(\Re Ty, y)\rangle|^{1/2}$, $\forall x, y \in \mathcal{K}$.

Furthermore, each of these conditions implies

4. $\|Tx\|^2 \leq (1 + \tan(\alpha))^2 \|\Re T\|(\Re Tx, x)$, $\forall x \in \mathcal{K}$.

Let $S(n)$ denote the n-by-n backward-shift matrix, i.e., $S(n) = (\delta_{i+1,j})_{n \times n}$. Let $R(n) = (I - S(n))^{-1}$, then $R(n)$ is the n-by-n matrix with 1's on and above the diagonal and 0's below the diagonal.

Lemma 3. $A(R(n)) = \Sigma(\pi/2 - \pi/(n + 1))$.

Proof. Since $R(n)$ is a real matrix, $A(R(n)) = A(I - S(n))$. The result follows if we show that $W(S(n))$ is a disc centered at 0 with radius $\cos(\pi/n + 1)$. It is easy to see that $W(S(n))$ is a disc centered at 0. The numerical radius of $S(n)$ is the spectral radius of $\Re S(n)$. Put $U_m(\lambda) = \det(2\lambda - S(m) - S(m)^*)$, $m = 2, 3, \ldots$. If we define $U_0(\lambda) = 1$ and $U_1(\lambda) = 2\lambda$, then $U_m(\lambda) = 2\lambda U_{m-1}(\lambda) - U_{m-2}(\lambda)$, $m = 2, 3, \ldots$. We notice that $U_m(\lambda)$ satisfies the recurrence relations and initial conditions of the Chebyshev polynomial of the second kind [9, p. 128]. Thus

$$U_m(\lambda) = \sin((m + 1)\arccos(\lambda))/\sin(\arccos(\lambda)).$$

Consequently the numerical radius of $S(n)$ is $\cos(\pi/n + 1)$.

Proposition [2]. Let $S, T \in \mathfrak{B}(\mathcal{K})$ and let $S \otimes T$ denote the tensor product acting on the product space $\mathcal{K} \otimes \mathcal{K}$. Then $\sigma(S \otimes T) = \sigma(S) \cdot \sigma(T)$.

Corollary. Let \mathcal{K}_1 and \mathcal{K}_2 be two Hilbert spaces. For $T_j \in \mathfrak{B}(\mathcal{K}_j)$, $j = 1, 2$, $\sigma(T_1 \otimes T_2) = \sigma(T_1) \cdot \sigma(T_2)$.

Lemma 4 [8]. Let $T_j \in \mathfrak{B}(\mathcal{K}_j)$ be a normal operator, $j = 1, 2$. Then $\text{Cl}(W(T_1 \otimes T_2)) = \text{Cl}(\text{Co}(W(T_1)) \cdot W(T_2)))$.

Proof. $T_1 \otimes T_2$ is also normal.

L.H.S. $= \text{Co}(\sigma(T_1 \otimes T_2))$ = $\text{Co}(\sigma(T_1) \cdot \sigma(T_2))$ by Corollary

$= \text{Co}(\text{Co}(\sigma(T_1)) \cdot \text{Co}(\sigma(T_2)))$

$= \text{Co}(\text{Cl}(W(T_1)) \cdot \text{Cl}(W(T_2))) = \text{R.H.S.}$.
3. Characterizations of cyclically monotone linear operators.

Theorem 1. Let $T \in \mathcal{B}(\mathcal{H})$. The following statements are equivalent.

1. T is n-cyclically monotone.
2. For every sequence y_1, \ldots, y_{n-1} of $(n-1)$ points in \mathcal{H},
 \[
 \sum_{j=1}^{n-1} \text{Re} \left(Ty_j, \sum_{k=1}^{j} y_k \right) > 0.
 \]
3. The operator $R(n-1) \otimes T$ on $\mathbb{C}^{n-1} \otimes \mathcal{H}$ is accretive.
4. $A(T) \subset \Sigma(\pi/n)$.

Proof. (1) \iff (2).

\[
\sum_{j=0}^{n-1} (Tx_j, x_j - x_{j+1}) = \sum_{j=1}^{n-1} (Tx_j - Tx_{j-1}, x_j - x_0)
= \sum_{j=1}^{n-1} \left(Ty_j, \sum_{k=1}^{j} y_k \right),
\]
where $y_k = x_k - x_{k-1}$.

(2) \iff (3).

\[
\sum_{j=1}^{n-1} \left(Ty_j, \sum_{k=1}^{j} y_k \right) = \sum_{j=1}^{n-1} \left(y_j, \sum_{k=1}^{j} T^* y_k \right)
= \left[\begin{array}{c} y_1 \\ y_2 \\ \vdots \\ y_{n-1} \end{array} \right] \left[\begin{array}{c} T^* y_1 \\ T^* y_1 + T^* y_2 \\ \vdots \\ T^* y_1 + T^* y_2 + \cdots + T^* y_{n-1} \end{array} \right]
= \left[\begin{array}{c} y_1 \\ y_2 \\ \vdots \\ y_{n-1} \end{array} \right] \left[\begin{array}{cc} T^* & \bigodot \\ T^* T^* & \ldots \end{array} \right] \left[\begin{array}{c} y_1 \\ y_2 \\ \vdots \\ y_{n-1} \end{array} \right]
= R(n-1) \otimes T \left[\begin{array}{c} y_1 \\ y_2 \\ \vdots \\ y_{n-1} \end{array} \right].
\]

(3) \iff (4) is an immediate consequence of Lemma 3 and

Theorem 2. Let $T_j \in \mathcal{B}(\mathcal{H}_j)$ and $A(T_j) = \Sigma(\alpha_j, \beta_j), j = 1, 2$. Suppose either

(i) $A(T_1 \otimes T_2) \neq \mathcal{H}$, or

(ii) $(\beta_1 - \alpha_1) + (\beta_2 - \alpha_2) < \pi$; then $A(T_1 \otimes T_2) = \Sigma(\alpha_1 + \alpha_2, \beta_1 + \beta_2)$.
Proof. Since it is always true that $W(T_1 \otimes T_2) \supset W(T_1) \cdot W(T_2)$,

$$A(T_1 \otimes T_2) \supset \Sigma(\alpha_1 + \alpha_2, \beta_1 + \beta_2).$$

Consequently, assumption (i) implies assumption (ii).

To show that $A(T_1 \otimes T_2) \subset 2(a_1 + a_2, b_1 + b_2)$, we need only to establish the case $a_j = -b_j$, i.e., $A(T_j) = \Sigma(b_j)$, $j = 1, 2$. Write $T_j = \text{Re } T_j + \text{Im } T_j$, $j = 1, 2$. Since $\text{Re } T_j$ is nonnegative, it has a nonnegative square root Q_j [5, Theorem V.3.35(iv)]. Furthermore, if we assume that $\text{Re } T_j$ is invertible, then $T_j = Q_j N_j Q_j^{-1}$, where N_j is the normal operator $I + iQ_j^{-1} (\text{Im } T_j) Q_j^{-1}$, $j = 1, 2$. Thus $T_1 \otimes T_2 = (Q_1 \otimes Q_2)(N_1 \otimes N_2)(Q_1 \otimes Q_2)$.

$$A(T_1 \otimes T_2) = A(N_1 \otimes N_2) \text{ by Lemma 1}$$

$$= \mathbb{R}^+ \cdot \text{Cl}(W(N_1 \otimes N_2))$$

$$= \mathbb{R}^+ \cdot \text{Cl}(\text{Co}(W(N_1)W(N_2))) \text{ by Lemma 4}$$

$$= \Sigma(\beta_1 + \beta_2) \text{ by assumption (ii).}$$

Thus the theorem is proved if both $\text{Re } T_1$ and $\text{Re } T_2$ are invertible. In general, we have $A((T_1 + \epsilon) \otimes (T_2 + \epsilon)) \subset \Sigma(\beta_1 + \beta_2)$ for each $\epsilon > 0$. $\text{Cl}(W(\cdot))$ is continuous with respect to the uniform operator topology [3, Problem 175]; we let ϵ tend to 0 and obtain $A(T_1 \otimes T_2) \subset \Sigma(\beta_1 + \beta_2)$. □

Theorem 1 answers the conjecture raised in [6, p. 500]. The following corollary is a complex linear operator version of [6, Theorem 1] and [7, Theorem 24.8].

Corollary 1. For $T \in \mathfrak{S} (\mathcal{H})$, T is nonnegative if and only if T is n-cyclically monotone, $n = 2, 3, \ldots$.

Remarks. Since the concept of an n-cyclically monotone operator is in essence a finite dimensional one, Theorem 1 can be rephrased for the cases of unbounded operators or sectorial sesquilinear forms [5, §VI-1.2]. An n-cyclically monotone linear operator, if defined on the whole Hilbert space, is necessarily bounded [5, Theorem V.3.4].

4. Spectra of products. In this section we study the spectrum location of the product of two operators.

Theorem 3 [10, Theorem 2], [11, Theorem 1]. Let $S, T \in \mathfrak{S} (\mathcal{H})$. If $0 \not\in \text{Cl}(W(T))$, then $\{\sigma(ST) \cup \sigma(TS)\} \subset \text{Cl}(W(S))/\text{Cl}(W(T^{-1}))$.

Proof. We note that the nonzero elements of $\sigma(ST)$ and $\sigma(TS)$ are the same [3, Problem 61], and $0 \in \text{Cl}(W(T))$ if and only if $0 \in \text{Cl}(W(T^{-1}))$. If $0 \in \sigma(ST - \lambda)$, then

$$0 \in \sigma(S - \lambda T^{-1}) \subset \text{Cl}(W(S - \lambda T^{-1}))$$

$$\subset \text{Cl}(W(S)) - \lambda \cdot \text{Cl}(W(T^{-1})). \quad \Box$$

Thus for an m-cyclically monotone operator S and an n-cyclically monotone operator T, $\{\sigma(ST) \cup \sigma(TS)\} \subset \Sigma(\pi/m + \pi/n)$ if $0 \not\in \text{Cl}(W(S))$ or

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
0 \not\in \text{Cl}(W(T)). \text{ We conclude this paper by showing that the last assumption is not necessary.}

Theorem 4 (cf. [4]). \textit{Let} \(S, T \in \mathcal{B} (\mathcal{H}) \) \textit{with} \(S \) \textit{accretive and} \(T \) \textit{satisfying the condition:}

(*) \textit{There exists a constant} \(d > 0 \) \textit{such that} \(\text{Re}(Tx, x) > d \| Tx \|^2, \forall x \in \mathcal{H} \).

\textit{Then} \((-\infty, 0) \cap \{ \sigma(ST) \cup \sigma(TS) \} = \emptyset \).

Proof. Let \(\lambda \) be a point in the approximate point spectrum of \(ST \), i.e., there exists a sequence \(\{x_n\} \) of unit vectors such that \(\|(\lambda - ST)x_n\| \to 0 \). Since \((\lambda x_n, Tx_n) - (STx_n, x_n) \to 0 \) and \(S \) is accretive, \(\lim \inf \text{Re}(\lambda x_n, Tx_n) = \lim \inf \text{Re}(STx_n, x_n) \geq 0 \). If we assume \(\lambda < 0 \), then \(\lim \sup \text{Re}(x_n, Tx_n) < 0 \). By (*), \(\text{Re}(x_n, Tx_n) > d \| Tx_n \|^2 \); consequently, \(\| Tx \| \to 0 \) and this contradicts \(\lambda \neq 0 \). Thus the approximate point spectrum of \(ST \) has no negative numbers, and therefore the boundary of \(\sigma(ST) \) has no negative numbers [3, Problem 63]. Hence \((-\infty, 0) \cap \sigma(ST) = \emptyset \). \(\square \)

For \(T \in \mathcal{B} (\mathcal{H}), \) if \(A(T) \subset \Sigma(\alpha) \text{ with } \alpha < \pi/2, \) then \(T \) satisfies (*) by the last part of Lemma 2. However, the converse does not hold; the example in [4, p. 309] is also valid for the complex case.

Theorem 5. Let \(T_j \in \mathcal{B} (\mathcal{H}) \) \textit{with} \(A(T_j) = \Sigma(\alpha_j, \beta_j), j = 1, 2 \). \textit{Suppose} \((\beta_1 - \alpha_1) + (\beta_2 - \alpha_2) < 2\pi; \) \textit{then}

\[\{ \sigma(T_1 T_2) \cup \sigma(T_2 T_1) \} \subset \Sigma(\alpha_1 + \alpha_2, \beta_1 + \beta_2). \]

Proof. Consider the operators \(e^{i\theta}T_j, j = 1, 2; \) vary the real numbers \(\theta_1 \) and \(\theta_2 \) and apply Theorem 4. \(\square \)

Acknowledgement. The author wishes to thank A. L. Rubin for his suggestions.

Added February 1976. Professor R. T. Rockafellar has kindly informed the author that Theorem 1, (i) \(\Leftrightarrow \) (iv), was anticipated by E. Asplund in his paper \textit{A monotone convergence theorem for sequences of nonlinear mappings}, Proc. Sympos. Pure Math., vol. 18, part 1, Amer. Math. Soc., Providence, R. I., 1970, pp. 1–19.

References

DEPARTMENT OF MATHEMATICS, CALIFORNIA INSTITUTE OF TECHNOLOGY, PASADENA, CALIFORNIA 91125

DEPARTMENT OF MATHEMATICS AND ASTRONOMY, UNIVERSITY OF MANITOBA, WINNIPEG, MANITOBA, CANADA R3T 2N2