Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Cyclically monotone linear operators


Author: Elias S. W. Shiu
Journal: Proc. Amer. Math. Soc. 59 (1976), 127-132
MSC: Primary 47A10; Secondary 47B44
DOI: https://doi.org/10.1090/S0002-9939-1976-0410417-3
MathSciNet review: 0410417
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A linear operator on a complex Hilbert space $ \mathcal{H}$ is called $ n$-cyclically monotone if for each sequence $ {x_0},{x_1}, \ldots ,{x_{n - 1}},{x_n} = {x_0}$ of $ n$ elements in $ \mathcal{H},\Sigma _{j = 0}^{n - 1}\operatorname{Re} (T{x_j} - {x_{j + 1}}) \geqslant 0$. We show that $ T$ is $ n$-cyclically monotone if and only if $ \vert\operatorname{Arg} (Tx,x)\vert \leqslant \pi /n,\forall x \in \mathcal{H}$. If $ {T_m}$ and $ {T_n}$ are $ m$- and $ n$-cyclically monotone operators, then the spectrum of the product $ {T_m}{T_n}$ lies in the sector $ \{ z \in {\mathbf{C}}:\vert\operatorname{Arg} \;z\vert \leqslant \pi /m + \pi /n\} $.


References [Enhancements On Off] (What's this?)

  • [1] H. Brezis and F. E. Browder, Maximal monotone operators in nonreflexive Banach spaces and nonlinear integral equations of Hammerstein type, Bull. Amer. Math. Soc. 81 (1975), 82-88. MR 0407670 (53:11442)
  • [2] A. Brown and C. Pearcy, Spectra of tensor products of operators, Proc. Amer. Math. Soc. 17 (1966), 162-166. MR 32 #6218. MR 0188786 (32:6218)
  • [3] P. R. Halmos, A Hilbert space problem book, Van Nostrand, Princeton, N. J., 1967. MR 34 #8178. MR 0208368 (34:8178)
  • [4] P. Hess, On nonlinear equations of Hammerstein type in Banach spaces, Proc. Amer. Math. Soc. 30 (1971), 308-312. MR 43 #7980. MR 0282268 (43:7980)
  • [5] T. Kato, Perturbation theory for linear operators, Die Grundlehren der math. Wissenschaften, Band 132, Springer-Verlag, New York, 1966. MR 34 #3324. MR 0203473 (34:3324)
  • [6] R. T. Rockafellar, Characterization of subdifferentials of convex functions, Pacific J. Math. 17 (1966), 497-510. MR 33 #1769. MR 0193549 (33:1769)
  • [7] -, Convex analysis, Princeton Math. Ser., no. 28, Princeton Univ. Press, Princeton, N. J., 1970. MR 43 #445.
  • [8] T. Saitô, Numerical ranges of tensor products of operators, Tôhoku Math. J. (2) 19 (1967), 98-100. MR 37 #4654. MR 0229076 (37:4654)
  • [9] J. Todd (Editor), Survey of numerical analysis, McGraw-Hill, New York, 1962. MR 24 #B1271. MR 0135221 (24:B1271)
  • [10] H. Wielandt, On the eigenvalues of $ A + B$ and $ AB$, J. Res. Nat. Bur. Standards Sect. B 77B (1973), 61-63. MR 49 #318. MR 0335537 (49:318)
  • [11] J. P. Williams, Spectra of products and numerical ranges, J. Math. Anal. Appl. 17 (1967), 214-220. MR 34 #3341. MR 0203491 (34:3341)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47A10, 47B44

Retrieve articles in all journals with MSC: 47A10, 47B44


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1976-0410417-3
Keywords: Cyclically monotone operators, numerical ranges, tensor products, spectra of products
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society