of the compact operators is zero
Authors:
L. G. Brown and Claude Schochet
Journal:
Proc. Amer. Math. Soc. 59 (1976), 119122
MSC:
Primary 47B05; Secondary 58G15
MathSciNet review:
0412863
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: We prove that of the compact operators is zero. This theorem has the following operatortheoretic formulation: any invertible operator of the form (identity) (compact) is the product of (at most eight) multiplicative commutators , where each is of the form (identity) (compact). The proof uses results of L. G. Brown, R. G. Douglas, and P. A. Fillmore on essentially normal operators and a theorem of A. Brown and C. Pearcy on multiplicative commutators.
 [1]
Arlen
Brown and Carl
Pearcy, Multiplicative commutators of operators, Canad. J.
Math. 18 (1966), 737–749. MR 0200720
(34 #608)
 [2]
Lawrence
G. Brown, The determinant invariant for operators with trace class
self commutators, Proceedings of a Conference on Operator Theory
(Dalhousie Univ., Halifax, N.S., 1973) Springer, Berlin, 1973,
pp. 210–228. Lecture Notes in Math., Vol. 345. MR 0390830
(52 #11653)
 [3]
Lawrence
G. Brown, Operator algebras and algebraic
𝐾theory, Bull. Amer. Math. Soc.
81 (1975), no. 6,
1119–1121. MR 0383090
(52 #3971), http://dx.doi.org/10.1090/S000299041975139437
 [4]
L.
G. Brown, R.
G. Douglas, and P.
A. Fillmore, Unitary equivalence modulo the compact operators and
extensions of 𝐶*algebras, Proceedings of a Conference on
Operator Theory (Dalhousie Univ., Halifax, N.S., 1973) Springer, Berlin,
1973, pp. 58–128. Lecture Notes in Math., Vol. 345. MR 0380478
(52 #1378)
 [5]
L.
G. Brown, R.
G. Douglas, and P.
A. Fillmore, Extensions of 𝐶*algebras,
operators with compact selfcommutators, and 𝐾homology,
Bull. Amer. Math. Soc. 79 (1973), 973–978. MR 0346540
(49 #11265), http://dx.doi.org/10.1090/S000299041973132847
 [6]
J.
William Helton and Roger
E. Howe, Integral operators: commutators, traces, index and
homology, Proceedings of a Conference Operator Theory (Dalhousie
Univ., Halifax, N.S., 1973) Springer, Berlin, 1973,
pp. 141–209. Lecture Notes in Math., Vol. 345. MR 0390829
(52 #11652)
 [7]
Jerome
Kaminker and Claude
Schochet, Steenrod homology and operator
algebras, Bull. Amer. Math. Soc.
81 (1975), no. 2,
431–434. MR 0450997
(56 #9287), http://dx.doi.org/10.1090/S00029904197513775X
 [8]
John
Milnor, Introduction to algebraic 𝐾theory, Princeton
University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1971.
Annals of Mathematics Studies, No. 72. MR 0349811
(50 #2304)
 [9]
Carl
Pearcy and David
Topping, On commutators in ideals of compact operators,
Michigan Math. J. 18 (1971), 247–252. MR 0284853
(44 #2077)
 [1]
 A. Brown and C. Pearcy, Multiplicative commutators of operators, Canad. J. Math. 18 (1966), 737749. MR 34 #608. MR 0200720 (34:608)
 [2]
 L. G. Brown, The determinant invariant for operators with trace class selfcommutators, Proc. Conf. on Operator Theory, Lecture Notes in Math., vol. 345, SpringerVerlag, New York, 1973. MR 0390830 (52:11653)
 [3]
 , Operator algebras and algebraic theory, Bull. Amer. Math. Soc. 81 (1975), 11191121. MR 0383090 (52:3971)
 [4]
 L. G. Brown, R. G. Douglas and P. A. Fillmore, Unitary equivalence modulo the compact operators and extensions of algebras, Proc. Conf. on Operator Theory, Lecture Notes in Math., vol. 345, SpringerVerlag, New York, 1973. MR 0380478 (52:1378)
 [5]
 , Extensions of algebras, operators with compact selfcommutators, and homology, Bull. Amer. Math. Soc. 79 (1973), 973978. MR 0346540 (49:11265)
 [6]
 J. W. Helton and R. E. Howe, Integral operators: commutators, traces, index and homology, Proc. Conf. on Operator Theory, Lecture Notes in Math., vol. 345, SpringerVerlag, New York, 1973. MR 0390829 (52:11652)
 [7]
 J. Kaminker and C. Schochet, Steenrod homology and operator algebras, Bull. Amer. Math. Soc. 81 (1975), 431434. MR 0450997 (56:9287)
 [8]
 J. Milnor, Introduction to algebraic theory, Ann. of Math. Studies, no. 72, Princeton Univ. Press, Princeton, N. J., 1971. MR 0349811 (50:2304)
 [9]
 C. Pearcy and D. Topping, On commutators in ideals of compact operators, Michigan Math. J. 18 (1971), 247252. MR 44 #2077. MR 0284853 (44:2077)
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC:
47B05,
58G15
Retrieve articles in all journals
with MSC:
47B05,
58G15
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029939197604128630
PII:
S 00029939(1976)04128630
Keywords:
Compact operator,
essentially normal operator,
algebraic theory,
extensions of algebras
Article copyright:
© Copyright 1976
American Mathematical Society
