FIXED POINTS AND ITERATION OF A NONEXPANSIVE MAPPING IN A BANACH SPACE

SHIRO ISHIKAWA

Abstract. The following result is shown. If T is a nonexpansive mapping from a closed convex subset D of a Banach space into a compact subset of D and x₀ is any point in D, then the sequence \(\{x_n\} \) defined by \(x_{n+1} = 2^{-1}(x_n + Tx_n) \) converges to a fixed point of T. As a matter of fact, a theorem which includes this result is proved. Furthermore, a similar result is obtained under certain restrictions which do not imply the assumption on the compactness of T.

Throughout this paper we consider the following iterative procedure, which is a special case of the generalized iteration method introduced by W. R. Mann [7].

Definition. If D is a subset of a Banach space X, T is a mapping from D into X, and \(x_0 \in D \), then \(M(x_0, t_n, T) \) is the sequence \(\{x_n\}_{n=1}^{\infty} \) defined by \(x_{n+1} = (1 - t_n)x_n + t_nTx_n \), where \(\{t_n\}_{n=1}^{\infty} \) is a real sequence. If a point \(x_0 \) and a sequence \(\{t_n\}_{n=1}^{\infty} \) satisfy the following three conditions:

1. \(\sum_{n=1}^{\infty} t_n = \infty \),
2. \(0 < t_n < b < 1 \) for all positive integers \(n \),

and

\(x_n \in D \) for all positive integers \(n \),

then \(x_0 \) and \(\{t_n\}_{n=1}^{\infty} \) will be said to satisfy Condition A.

Note that if \(t_n \in [a, b] \) for all positive integers \(n \) and \(0 < a < b < 1 \), then it is obvious that the sequence \(\{t_n\}_{n=1}^{\infty} \) satisfies (1) and (2).

These iteration methods have been investigated by Krasnosel'skiĭ [6], Edelstein [3], Outlaw [9], Dotson [2] and others. They showed that these iterative methods may be used to find a fixed point of a nonexpansive mapping \(T \) mainly in a uniformly convex Banach space or a strictly convex Banach space, where a mapping \(T \) from a subset \(D \) of a Banach space \(X \) into \(X \) is called a nonexpansive mapping if \(T \) satisfies the condition that \(\|Tx - Ty\| \leq \|x - y\| \) for all \(x, y \in D \).

In this paper we study the iterative method for nonexpansive mappings...
without any assumption on convexity of the Banach space.

Lemma 1. Let \(\{s_i\}_{i=1}^{\infty} \) be a sequence in the real numbers and let \(\{u_i\}_{i=1}^{\infty} \) be a sequence in a Banach space \(X \). Then for any positive integer \(N \),

\[
\left(\prod_{i=1}^{N-1} s_i \right) \left(\sum_{i=1}^{N} (1 - s_i)u_i \right)
\]

(3)

\[
= \left(1 - \prod_{i=1}^{N} s_i \right) u_N - \sum_{i=1}^{N-1} \left\{ \left(\prod_{j=i+1}^{N-1} s_j \right) \left(1 - \prod_{j=1}^{i} s_j \right) (u_{i+1} - s_i u_i) \right\}.
\]

If \(X \) is the real line and \(u_i = 1 \) for all \(i \), we have the special case

\[
\left(\prod_{i=1}^{N-1} s_i \right) \left(\sum_{i=1}^{N} (1 - s_i) \right)
\]

(4)

\[
= 1 - \prod_{i=1}^{N} s_i - \sum_{i=1}^{N-1} \left\{ \left(\prod_{j=i+1}^{N-1} s_j \right) \left(1 - \prod_{j=1}^{i} s_j \right) (1 - s_i) \right\}.
\]

Here and hereafter we agree that \(\sum_{i=m}^{n} \) and \(\prod_{i=m}^{n} \) are defined to be 0 and 1, respectively, for \(n < m \).

Proof. When \(N = 1 \), the result is trivial. Supposing that (3) is true for some \(N > 1 \), we have

\[
\sum_{i=1}^{N} \left\{ \left(\prod_{j=i+1}^{N} s_j \right) \left(1 - \prod_{j=1}^{i} s_j \right) (u_{i+1} - s_i u_i) \right\}
\]

\[
= s_N \sum_{i=1}^{N-1} \left\{ \left(\prod_{j=i+1}^{N-1} s_j \right) \left(1 - \prod_{j=1}^{i} s_j \right) (u_{i+1} - s_i u_i) \right\}
\]

\[
- s_N \left(1 - \prod_{i=1}^{N} s_i \right) u_N + \left(1 - \prod_{i=1}^{N} s_i \right) u_{N+1}
\]

\[
= s_N \left\{ \left(1 - \prod_{i=1}^{N} s_i \right) u_N - \left(\prod_{i=1}^{N-1} s_i \right) \left(\sum_{i=1}^{N} (1 - s_i) u_i \right) \right\}
\]

\[
- s_N \left(1 - \prod_{i=1}^{N} s_i \right) u_N + \left(1 - \prod_{i=1}^{N} s_i \right) u_{N+1}
\]

\[
= - \left(\prod_{i=1}^{N} s_i \right) \left(\sum_{i=1}^{N} (1 - s_i) u_i \right) + \left(1 - \prod_{i=1}^{N} s_i \right) u_{N+1},
\]

from which it follows that

\[
\text{the right-hand side of (3) with } N + 1 \text{ for } N
\]

\[
= \left(1 - \prod_{i=1}^{N+1} s_i \right) u_{N+1} - \sum_{i=1}^{N} \left\{ \left(\prod_{j=i+1}^{N} s_j \right) \left(1 - \prod_{j=1}^{i} s_j \right) (u_{i+1} - s_i u_i) \right\}
\]

\[
= \left(1 - s_{N+1} \prod_{i=1}^{N} s_i \right) u_{N+1} + \left(\prod_{i=1}^{N} s_i \right) \left(\sum_{i=1}^{N} (1 - s_i) u_i \right) - \left(1 - \prod_{i=1}^{N} s_i \right) u_{N+1}
\]

\[
= \left(\prod_{i=1}^{N} s_i \right) \left(\sum_{i=1}^{N+1} (1 - s_i) u_i \right).
\]
By induction this completes the proof.

Lemma 2. Let D be a subset of a Banach space X and let T be a nonexpansive mapping from D into X. If there exist x_1 and $\{t_n\}_{n=1}^\infty$ that satisfy Condition A and $M(x_1, t_n, T)$ is bounded, then $x_n - Tx_n$ converges to zero as $n \to \infty$.

Proof. Since T is a nonexpansive mapping, we have

$$
\|x_{n+1} - Tx_{n+1}\| = \|(1 - t_n)x_n + t_n Tx_n - Tx_{n+1}\|
$$

$$
= \|(1 - t_n)(x_n - Tx_n) + Tx_n - Tx_{n+1}\|
= (1 - t_n)\|x_n - Tx_n\| + \|x_n - x_{n+1}\|
= (1 - t_n)\|x_n - Tx_n\| + \|x_n - ((1 - t_n)x_n + t_n Tx_n)\|
= \|x_n - Tx_n\|.
$$

Thus the sequence $\{\|x_n - Tx_n\|\}_{n=1}^\infty$ is nonincreasing and bounded below, so $\lim_{n \to \infty} \|x_n - Tx_n\|$ exists.

Suppose that $\lim_{n \to \infty} \|x_n - Tx_n\| = r > 0$. That is, for any $\varepsilon > 0$, there exists an integer m such that

$$
(5) \quad r < \|x_{m+i} - Tx_{m+i}\| \leq (1 + \varepsilon)r \quad \text{for all positive integers } i.
$$

Then since T is nonexpansive,

$$
\|(Tx_{m+i+1} - x_{m+i+1}) - (1 - t_{m+i})(Tx_{m+i} - x_{m+i})\|
= \|T((1 - t_{m+i})x_{m+i} + t_{m+i}Tx_{m+i})
- ((1 - t_{m+i})x_{m+i} + t_{m+i}Tx_{m+i}) - (1 - t_{m+i})(Tx_{m+i} - x_{m+i})\|
= \|T((1 - t_{m+i})x_{m+i} + t_{m+i}Tx_{m+i}) - Tx_{m+i}\|
\leq t_{m+i}\|x_{m+i} - Tx_{m+i}\| \leq t_{m+i}(1 + \varepsilon)r.
$$

Since $\{x_n\}_{n=1}^\infty$ is bounded and $\{t_n\}_{n=1}^\infty$ satisfies condition (1), there exists an integer N such that

$$
(7) \quad r \sum_{i=1}^{N-1} t_{m+i} \leq \delta(M) + 1 \leq r \sum_{i=1}^N t_{m+i}
$$

where $\delta(M)$ is defined by $\sup\{\|x_i - x_j\|; 0 < i,j < \infty\}$.

Now setting $s_i = 1 - t_{m+i}$ and $u_i = Tx_{m+i} - x_{m+i}$ for all positive integers i, we get from (6),

$$
(8) \quad \|u_{i+1} - s_i u_i\| = \|Tx_{m+i+1} - x_{m+i+1} - (1 - t_{m+i})(Tx_{m+i} - x_{m+i})\|
\leq t_{m+i}(1 + \varepsilon)r = (1 - s_i)(1 + \varepsilon)r
$$

and

$$
x_{m+N+1} - x_{m+1} = \sum_{i=1}^N (((1 - t_{m+i})x_{m+i} + t_{m+i}Tx_{m+i}) - x_{m+i})
= \sum_{i=1}^N t_{m+i}(Tx_{m+i} - x_{m+i}) = \sum_{i=1}^N (1 - s_i)u_i.
$$
Thus using Lemma 1, we have from (9), (3), (5) and (8) that
\[
\left(\prod_{i=1}^{N-1} s_i \right) \| x_{m+N+1} - x_{m+1} \|
= \left\| \left(\prod_{i=1}^{N-1} s_i \right) \left(\sum_{i=1}^N (1 - s_i) u_i \right) \right\|
\geq \left(1 - \prod_{i=1}^N s_i \right) \| u_N \| - \sum_{i=1}^{N-1} \left\{ \left(\prod_{j=i+1}^{N-1} s_j \right) \left(1 - \prod_{j=1}^i s_j \right) \| u_{i+1} - s_j u_i \| \right\}
\geq \left(1 - \prod_{i=1}^N s_i \right) r - \sum_{i=1}^{N-1} \left\{ \left(\prod_{j=i+1}^{N-1} s_j \right) \left(1 - \prod_{j=1}^i s_j \right) (1 - s_i)(1 + \epsilon)r \right\}
= \left[1 - \prod_{i=1}^N s_i - \sum_{i=1}^{N-1} \left\{ \left(\prod_{j=i+1}^{N-1} s_j \right) \left(1 - \prod_{j=1}^i s_j \right) (1 - s_i) \right\} \right] r
- \epsilon r \sum_{i=1}^{N-1} \left\{ \left(\prod_{j=i+1}^{N-1} s_j \right) \left(1 - \prod_{j=1}^i s_j \right) (1 - s_i) \right\}.
\]

since \(s_i = 1 - t_{m+i} \geq 1 - b > 0 \), which implies from (4) and (7) that
\[
\| x_{m+N+1} - x_{m+1} \| \geq r \sum_{i=1}^N (1 - s_i) - \epsilon r \left(\prod_{i=1}^{N-1} s_i \right)^{-1}
\times \left\{ 1 - \prod_{i=1}^N s_i - \left(\prod_{i=1}^{N-1} s_i \right) \left(\sum_{i=1}^N (1 - s_i) \right) \right\}
\]
\[
(10)
\geq r \sum_{i=1}^N (1 - s_i) - \epsilon r \left(\prod_{i=1}^{N-1} s_i \right)^{-1}
= r \sum_{i=1}^N t_{m+i} - \epsilon r \prod_{i=1}^{N-1} \left(1 - t_{m+i} \right)^{-1}
\geq \delta(M) + 1 - \epsilon r \prod_{i=1}^{N-1} \left(1 - t_{m+i} \right)^{-1}.
\]

Since \(\log(1 + y) \leq y \) for any \(y \in (-1, \infty) \), we have from (2) and (7),
\[
\prod_{i=1}^{N-1} \left(1 - t_{m+i} \right)^{-1} = \prod_{i=1}^{N-1} \left(1 + t_{m+i}(1 - t_{m+i})^{-1} \right)
= \exp \left\{ \sum_{i=1}^{N-1} \log \left(1 + t_{m+i}(1 - t_{m+i})^{-1} \right) \right\}
\leq \exp \left\{ \sum_{i=1}^{N-1} t_{m+i}(1 - t_{m+i})^{-1} \right\}
\leq \exp \left\{ (1 - b)^{-1} \sum_{i=1}^{N-1} t_{m+i} \right\}
\leq \exp \left\{ (1 - b)^{-1} \left(\delta(M) + 1 \right) r^{-1} \right\}.
\]

From this and (10) we get that
\[
\delta(M) + 1 - \epsilon r \exp \left\{ (1 - b)^{-1} \left(\delta(M) + 1 \right) r^{-1} \right\}
\leq \| x_{m+N+1} - x_{m+1} \| \leq \delta(M).
\]

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Since ϵ is an arbitrary positive number, it follows that $\delta(M) + 1 \leq \delta(M)$. This contradiction completes the proof.

Remark. Let T be a nonexpansive mapping from a convex set D in a Banach space into a bounded subset of D and let $(1 - t)I + iT$ be denoted by T_t, where I is an identity map and $0 < t < 1$. Then $M(x_1, t, T)$ is bounded since it is a sequence in the convex hull of the union of $T(D)$ and the point x_1. Also it is clear that $T^n_t x_1 - T^{n-1}_t x_1 = t(Tx_n - x_n)$. Therefore we have by Lemma 2 that T_t is asymptotically regular (i.e. for any $x \in D$, $\|T^{n+1}_t x - T^n_t x\| \to 0$ as $n \to \infty$).

Fixed points and iterative process for compact mappings. Now we shall prove a fixed point theorem for a nonexpansive compact mapping and show that the iterative process $M(x_1, t_n, T)$ may be used to find the fixed point.

Theorem 1. Let D be a closed subset of a Banach space X and let T be a nonexpansive mapping from D into a compact subset of X. If there exist x_1 and $\{t_n\}_{n=1}^{\infty}$ that satisfy Condition A, then T has a fixed point in D and $M(x_1, t_n, T)$ converges to a fixed point of T.

Proof. Let D_0 denote the closure of the convex hull of the union of $T(D)$ and the point x_1. A well-known theorem of Mazur implies that D_0 is compact. The sequence $M(x_1, t_n, T)$ clearly belongs to D_0. From this and Condition A, it immediately follows that $\{x_n\}_{n=1}^{\infty}$ is a compact sequence in D. Hence there is a subsequence $\{x_{n_i}\}_{i=1}^{\infty}$ that converges to a point u, which obviously belongs to D since D is closed. And it is clear that $\lim_{i \to \infty} \|Tx_{n_i} - x_{n_i}\| = 0$ since Lemma 2 is applicable from the boundedness of D_0.

Now since T is nonexpansive,

$$\|Tu - u\| = \|Tu - Tx_{n_i} + Tx_{n_i} - x_{n_i} + x_{n_i} - u\| \\
\leq 2\|u - x_{n_i}\| + \|Tx_{n_i} - x_{n_i}\|,$$

which implies that u is a fixed point of T since $\lim_{i \to \infty} \|u - x_{n_i}\| = 0$ and $\lim_{i \to \infty} \|Tx_{n_i} - x_{n_i}\| = 0$.

Further,

$$\|x_{n+1} - u\| = \|(1 - t_n)x_n + t_n Tx_n - u\|$$

$$= \|(1 - t_n)(x_n - u) + t_n(Tx_n - Tu)\| \leq \|x_n - u\|$$

for any positive integer n. For any $\epsilon > 0$ there exists an integer n_0 such that $\|x_{n_0} - u\| < \epsilon$, so we obtain from (11) that $\|x_n - u\| < \epsilon$ for any integer $n \geq n_0$. Therefore $M(x_1, t_n, T)$ converges to u, a fixed point of T.

As an immediate consequence of Theorem 1, we have the following corollaries.

Corollary 1. Let D be a closed subset of a Banach space X and let T be a nonexpansive mapping from D into a compact subset of X. If there exists $t \in (0, 1)$ such that $(1 - t)x + tx \in D$ for all $x \in D$, then T has a fixed point in D and for any $x_1 \in D$, $M(x_1, t, T)$ converges to a fixed point of T.

Corollary 2. Let D be a closed convex subset of a Banach space X and let T
be a nonexpansive mapping from D into a compact subset of D. Then T has a fixed point in D and $M(x_1, 2^{-1}, T)$ converges to a fixed point of T for any $x_1 \in D$.

Note that the first part of Corollary 2 is a special case of a fixed point theorem of Schauder.

Corollary 2 was proved for uniformly convex spaces by Krasnosel’skiǐ [6] and strictly convex spaces by Edelstein [3].

Fixed points and iterative process for noncompact mappings. Next we shall consider the iterative process for a nonexpansive mapping without the assumption on the compactness of T.

Let D be a subset of a Banach space X. A mapping $T: D \to X$ with a nonempty fixed points set F in D will be said to satisfy Condition B if there is a nondecreasing function $f: [0, \infty) \to [0, \infty)$ with $f(0) = 0$, $f(r) > 0$ for $r \in (0, \infty)$, such that $\|x - Tx\| \geq f(d(x, F))$ for all $x \in D$, where $d(x, F) = \inf\{|x - z|; z \in F\}$. This condition is due to Senter and Dotson [10].

Theorem 2. Let D be a closed subset of a Banach space X and let $T: D \to X$ be a nonexpansive mapping with a nonempty fixed points set F in D. If T satisfies Condition B and there exist x_1 and $\{t_n\}_{n=1}^{\infty}$ that satisfy Condition A, then $M(x_1, t_n, T)$ converges to a member of F.

Proof. The theorem is trivial if $x_1 \in F$, so we assume $x_1 \in D - F$. For any $u \in F$ we have that $\|Tx_n - u\| \leq \|x_n - u\|$ and so we get that

$$\|x_{n+1} - u\| = \|(1 - t_n)x_n + t_nTx_n - u\| \leq \|x_n - u\|$$

which implies that $d(x_{n+1}, F) \leq d(x_n, F)$ for all positive integers n. The sequence $(d(x_n, F))_{n=1}^{\infty}$ is nonincreasing and bounded below, so there exists $\lim_{n \to \infty} d(x_n, F)$, which we denote by r.

By the definition of f, we have

$$\|x_n - Tx_n\| \geq f(d(x_n, F)) \geq f(r).$$

Since it follows from (12) that $M(x_1, t_n, T)$ is a bounded sequence in D, we have from Lemma 2 and (13) that $f(r) = 0$. Hence we get that

$$\lim_{n \to \infty} d(x_n, F) = r = 0.$$
which implies \(\{u_i\}_{i=1}^{\infty} \) is a Cauchy sequence, so there exists \(v \) such that \(v = \lim_{i \to \infty} u_i \) and \(v \) belongs to \(F \) since \(F \) is closed. For any \(\varepsilon > 0 \) there exists \(i_0 > 0 \) such that \(2^{-i_0} < 2^{-1} \varepsilon \) and \(\|u_i_0 - v\| < 2^{-1} \varepsilon \), so we have that

\[
\|x_n - v\| \leq \|x_n - u_{i_0}\| + \|u_{i_0} - v\| < 2^{-i_0} + \|u_{i_0} - v\| < \varepsilon \text{ for all } n > i_0.
\]

Therefore \(M(x_1, t_n, T) \) converges to the point \(v \) of \(F \).

Corollary 3. Let \(D \) be a closed convex subset of \(X \) and let \(T: D \to D \) be a nonexpansive mapping with a nonempty fixed points set \(F \). If \(T \) satisfies Condition B, then for any \(x_1 \in D \) and any \(\{t_n\}_{n=1}^{\infty} \) satisfying (1) and (2), \(M(x_1, t_n, T) \) converges to a member of \(F \).

If \(X \) is a uniformly convex Banach space and \(0 < a \leq t_n \leq b < 1 \) for all integers \(n > 0 \), the analog of this corollary was obtained by Senter and Dotson [10].

The author wishes to express his sincere thanks to Professor T. Kawata, Professor S. Koizumi and the referee for their valuable suggestions regarding the improvement of the paper.

References

Faculty of Engineering, Department of Mathematics, Keio University, Yokohama, Japan