Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

Deficiencies of the associated curves of a holomorphic curve in the projective space


Author: Kiyoshi Niinō
Journal: Proc. Amer. Math. Soc. 59 (1976), 81-88
MSC: Primary 32H25; Secondary 30A70
MathSciNet review: 0414943
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ _kx$ be the nonconstant associated holomorphic curve of rank $ k(1 \leqq k \leqq n - 1)$ of a transcendental holomorphic curve $ x:{\mathbf{C}} \to {P_n}{\mathbf{C}}$. It is proved that if $ 1 \leqq k \leqq n - 2$ and $ A_j^k \in {P_{l(k) - 1}}{\mathbf{C}},j = 1, \ldots ,2l(k) - 2(l(k) = (_{k + 1}^{n + 1}))$ are in general position and $ {\langle _k}x,A_j^k\rangle \not \equiv 0$ for all $ A_j^k$, then $ \sum\nolimits_{j = 1}^{2l(k) - 2} {{\delta _k}(A_j^k) \leqq 2l(k) - 3} $ and that in the case when $ k = n - 1,\sum\nolimits_{{A^{n - 1}}} {{\delta _{n - 1}}({A^{n - 1}}) \leqq l(n - 1)} $, where $ \{ {A^{n - 1}}\} $ is a finite subset of $ {P_{l(n - 1) - 1}}{\mathbf{C}}$ in general position such that $ {\langle _{n - 1}}x,{A^{n - 1}}\rangle \not \equiv 0$ for all $ {A^{n - 1}}$. These are sharp.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 32H25, 30A70

Retrieve articles in all journals with MSC: 32H25, 30A70


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1976-0414943-2
PII: S 0002-9939(1976)0414943-2
Keywords: Holomorphic curve, associated curve of rank $ k$, projective space, order function, defect (deficiency), general position, degenerate curve
Article copyright: © Copyright 1976 American Mathematical Society