HOMEOMORPHISMS WITH MANY RECURRENT POINTS

BENJAMIN HALPERN

ABSTRACT. Let X be a topological space and H(X) the space of all homeomorphisms of X onto itself with the compact open topology. If \(f \in H(X) \) and \(p \in X \), then \(p \) is a recurrent point of \(f \) provided \(p \) is in the closure of \(\{ f^n(p) \mid n \geq 1 \} \). It is shown that if \(X \) is Hausdorff and \(V \) is a nonempty open subset of \(X \) homeomorphic to Euclidean \(n \)-dimensional space with \(n \geq 1 \), then \(\{ f \in H(X) \mid \text{the recurrent points of } f \text{ are dense in } V \} \) is nowhere dense in \(H(X) \).

Let \(X \) be a topological space and \(H(X) \) the space of all homeomorphisms of \(X \) onto itself with the compact open topology. If \(f \in H(X) \) and \(p \in X \), then \(p \) is a recurrent point of \(f \) provided \(p \in \overline{\{ f^n(p) \mid n \geq 1 \}} \), where \(\overline{A} \) denotes the closure of \(A \). Given a fixed Borel measure \(\mu \) on \(X \) which assigns a positive value to each nonempty open subset of \(X \), we say an \(f \in H(X) \) is recurrent (with respect to \(\mu \)) provided the set of nonrecurrent points of \(f \) has \(\mu \)-measure zero. The following theorem is proven in [1].

Theorem 1. If \(X \) is a compact manifold without boundary, of dimension greater than zero and of nonzero Euler characteristic, then the set of all recurrent homeomorphisms of \(X \) is nowhere dense in \(H(X) \).

We establish here a stronger conclusion than that of Theorem 1 while removing the hypotheses that \(X \) is compact and has nonzero Euler characteristic. We also weaken the hypothesis that \(X \) is an \(n \)-dimensional manifold without boundary, \(n \geq 1 \), to the assumption that there is a nonempty open subset of \(X \) homeomorphic to some Euclidean space \(\mathbb{R}^n \) with \(n \geq 1 \). The proof is a modification of the argument in [1].

Theorem 2. If \(X \) is a Hausdorff space and \(V \) is an open subset of \(X \) homeomorphic to \(\mathbb{R}^n \) with \(n \geq 1 \), then \(R = \{ f \in H(X) \mid \text{the recurrent points of } f \text{ are dense in } V \} \) is nowhere dense in \(H(X) \).

Proof. Assume the hypothesis and the contrary to the conclusion. Then there is a nonempty open set \(W \subset H(X) \) such that \(W \subset \overline{R} \). Let \(f \in W \cap R \). Then the recurrent points of \(f \) are dense in \(V \). Let \(p \) be one.

Received by the editors September 8, 1975.

AMS (MOS) subject classifications (1970). Primary 58D99; Secondary 22A65.

Key words and phrases. Homeomorphism, recurrent point, manifold, compact open topology.

© American Mathematical Society 1976
Claim. There exists a $\varphi \in W$ such that $\varphi^k(p) = p$ for some $k \geq 1$.

Proof. Since V is homeomorphic to \mathbb{R}^n, $n \geq 1$, we identify V with \mathbb{R}^n. Let ϵ be any positive number. Since p is a recurrent point for f, $f^k(p) \in U_\epsilon = \{ q \in V = \mathbb{R}^n \| q - p \| < \epsilon \}$ (where $\| \cdot \|$ is the Euclidean norm) for some $k \geq 1$. Let k be the smallest such integer. Let a be a homeomorphism of the closed ball $\overline{U}_\epsilon = \{ q \in V \| q - p \| \leq \epsilon \}$ onto itself such that a is fixed on the sphere $S_\epsilon = \{ q \in V \| q - p \| = \epsilon \}$ and $a(f^k(p)) = p$. Extend a to a homeomorphism of X onto itself by setting $a(x) = x$ for $x \notin U_\epsilon$. Set $\varphi = a \circ f$. It is immediate that $\varphi^i(p) = f^i(p)$ for $0 \leq i < k$ and $\varphi^k(p) = p$. It is not hard to see that for ϵ sufficiently small, $\varphi \in W$. Indeed, for the special case of $W = N(C, O) = \{ h \in H(X) \| h(C) \subset O \}$, where C is compact and O is open, we have $\varphi \in W$ whenever

$$\epsilon < \min(1, \frac{1}{2} \text{ the distance from } f(C) \cap \overline{U}_1 \text{ to } \mathbb{R}^n - O \cap U_2).$$

The general case follows because the sets $N(C, O)$ generate the compact open topology. This proves the claim.

The rest of the proof follows the proof in [1].

Let k be the smallest positive integer such that $\varphi^k(p) = p$. Pick an $\epsilon > 0$ such that $U_\epsilon, \varphi(U_\epsilon), \varphi^2(U_\epsilon), \ldots, \varphi^{k-1}(U_\epsilon)$ are pairwise disjoint. Pick a $\tau, 0 < \tau < \epsilon/3$ such that $\varphi^k(U_\tau) \subset U_{\epsilon/3}$. Let η be a homeomorphism from U_τ onto itself such that η is fixed on S_τ and $\eta(U_{2\epsilon/3}) \subset U_{\epsilon/2}$. See [1] for a detailed construction. Extend η to a homeomorphism of X onto itself by setting $\eta(x) = x$ for $x \notin U_\tau$. With an argument similar to that above it is not hard to see that for ϵ sufficiently small, $g = \varphi \circ \eta \in W$.

For $k \geq 2$ pick $t_i, i = 1, 2, \ldots, k$, such that $\frac{1}{2}\tau = t_1 < t_2 < \cdots < t_k = \tau$. For all $k \geq 1$ set $N_i = N(U_{2\epsilon/3}, \varphi(U_{\epsilon/2}))$ and

$$N_i = N(\varphi^{i-1}(U_{\epsilon/3}), \varphi^i(U_{\epsilon/3}))$$

for all $i, 2 \leq i \leq k$. Next, set $N = \bigcap_{i=1}^k N_i$. Unravelling the definition of the basic open set N, we see that if $h \in N$ and $q \in U_{2\epsilon/3} - U_{\epsilon/3}$ (which is nonempty because $n \geq 1$), then q is not a recurrent point of h. This also uses the fact that $U_\epsilon, \varphi(U_\epsilon), \ldots, \varphi^{k-1}(U_\epsilon)$ are pairwise disjoint. This shows that $N \cap R = \emptyset$. But $g \in N$ and so $g \notin R$. Yet, $g \in W \subset R$, a contradiction. Q.E.D.

References

Department of Mathematics, Indiana University, Bloomington, Indiana 47401