A semidirect product decomposition for certain Hopf algebras over an algebraically closed field
Author:
Richard K. Molnar
Journal:
Proc. Amer. Math. Soc. 59 (1976), 2932
MSC:
Primary 17B50
MathSciNet review:
0430009
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Let be a finite dimensional Hopf algebra over an algebraically closed field. We show that if is commutative and the coradical is a sub Hopf algebra, then the canonical inclusion has a Hopf algebra retract; or equivalently, if is cocommutative and the Jacobson radical is a Hopf ideal, then the canonical projection has a Hopf algebra section.
 [1]
Robert
G. Heyneman and Moss
Eisenberg Sweedler, Affine Hopf algebras. I, J. Algebra
13 (1969), 192–241. MR 0245570
(39 #6876)
 [2]
Saunders
Mac Lane, Homology, Classics in Mathematics, SpringerVerlag,
Berlin, 1995. Reprint of the 1975 edition. MR 1344215
(96d:18001)
 [3]
Richard
K. Molnar, Semidirect products of Hopf algebras, J. Algebra
47 (1977), no. 1, 29–51. MR 0498612
(58 #16700)
 [5]
John
Brendan Sullivan, Affine group schemes with integrals, J.
Algebra 22 (1972), 546–558. MR 0304418
(46 #3553)
 [6]
John
Brendan Sullivan, A decomposition theorem for proaffine solvable
algebraic groups over algebraically closed fields, Amer. J. Math.
95 (1973), 221–228. MR 0360614
(50 #13061)
 [7]
Moss
Eisenberg Sweedler, Connected fully reducible affine group schemes
in positive characteristic are abelian, J. Math. Kyoto Univ.
11 (1971), 51–70. MR 0280499
(43 #6219)
 [8]
Moss
E. Sweedler, Hopf algebras, Mathematics Lecture Note Series,
W. A. Benjamin, Inc., New York, 1969. MR 0252485
(40 #5705)
 [9]
Mitsuhiro
Takeuchi, A correspondence between Hopf ideals and subHopf
algebras, Manuscripta Math. 7 (1972), 251–270.
MR
0321963 (48 #328)
 [1]
 R. G. Heyneman and M. E. Sweedler, Affine Hopf algebras. I, J. Algebra 13 (1969), 192241. MR 39 #6876. MR 0245570 (39:6876)
 [2]
 S. Mac Lane, Homology, Grundlehren math. Wiss., Band 114, Academic Press, New York; SpringerVerlag, Berlin, 1963. MR 28 #122. MR 1344215 (96d:18001)
 [3]
 R. K. Molnar, Semidirect products of Hopf algebras, J. Algebra (to appear). 4. , On the coradical of a Hopf algebra (to appear). MR 0498612 (58:16700)
 [5]
 J. B. Sullivan, Affine group schemes with integrals, J. Algebra 22 (1972), 546558. MR 46 #3553. MR 0304418 (46:3553)
 [6]
 , A decomposition theorem for proaffine solvable algebraic groups over algebraically closed fields, Amer. J. Math. 95 (1973), 221228. MR 50 #13061. MR 0360614 (50:13061)
 [7]
 M. E. Sweedler, Connected fully reducible affine group schemes in positive characteristic are abelian, J. Math. Kyoto Univ. 11 (1971), 5170. MR 43 #6219. MR 0280499 (43:6219)
 [8]
 , Hopf algebras, Benjamin, New York, 1969. MR 40 #5705. MR 0252485 (40:5705)
 [9]
 M. Takeuchi, A correspondence between Hopf ideals and sub Hopf algebras, Manuscripta Math. 7 (1972), 251270. MR 48 #328. MR 0321963 (48:328)
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC:
17B50
Retrieve articles in all journals
with MSC:
17B50
Additional Information
DOI:
http://dx.doi.org/10.1090/S0002993919760430009X
PII:
S 00029939(1976)0430009X
Keywords:
Hopf algebra,
coradical,
semidirect product
Article copyright:
© Copyright 1976
American Mathematical Society
