ON MAXIMALITY OF GORENSTEIN SEQUENCES

MARIA GRAZIA MARINARI

Abstract. It is well known that if A is a Gorenstein ring, then every ideal generated by a regular sequence $x \subseteq A$ has irreducible (minimal) primary components. This feature led us to define a Gorenstein sequence of a ring A to be any ordered regular sequence $x = \{x_1, \ldots, x_r\} \subseteq A$ such that for every $i \in \{1, \ldots, r\}$ the ideal (x_1, \ldots, x_i) has irreducible minimal primary components. We showed for Gorenstein sequences (G-sequences for short) some parallels of well-known properties of regular sequences and moreover by means of G-sequences we gave the following natural characterization of local Gorenstein rings: “A local ring (A, m) is Gorenstein iff m contains a G-sequence of length $= K - \dim A$”.

In this note we are going to give some information about “maximality” of G-sequences in a local ring A, producing sufficient conditions on A in order that the maximal G-sequences of A all have the same length, i.e. in order to give a “good” definition of G-depth A. Furthermore, we will state some results about the G-depth behavior with respect to local flat ring homomorphisms.

0. Notations and preliminary results. Throughout this paper A will denote a commutative noetherian ring with unity. In addition, we will say that the Gorenstein locus of A is open if there exists an ideal $\mathfrak{N} \subseteq A$ such that for every $p \in \text{Spec } A$, A_p is a local Gorenstein ring iff $p \not\subseteq \mathfrak{N}$. In [H. K., Vortrag 6] it has been shown that the Gorenstein locus of a local Cohen-Macaulay (C. M. for short) ring A is open if there exists the canonical module K_A (for the definition and properties of K_A see [H. K., Vortrag 5] where it has also been given a sufficient criterion for the existence of K_A). If K_A exists then the ideal $\mathfrak{N} \subseteq A$ which defines the non-Gorenstein locus of A admits an explicit description (see [H. K., Bemerkung and Lemma 6.19]) as the ideal generated by the elements $q(x)$ with $x \in K_A$, $q \in \text{Hom}_A(K_A, A)$, i.e. \mathfrak{N} is the trace ideal of K_A (cf. [De M. I., Chapter 1, §1B]).

In this connection we have the following handy characterization:

0.1. If A is a ring with open Gorenstein locus and $\mathfrak{N} \subseteq A$ is the ideal defining the non-Gorenstein locus of A, then an ordered regular sequence $\{x_1, \ldots, x_r\} \subseteq A$ is a G-sequence iff for every $i \in \{1, \ldots, r\}$ and $p \in \text{Ass}(A/(x_1, \ldots, x_i))$ we have $p \not\subseteq \mathfrak{N}$.

Now we recall explicitly two concepts which will be frequently used in the following.
0.2. The G-depth of a local ring \((A, m)\) is the largest number of elements in \(m\) making up a G-sequence of \(A\). If \(m\) does not contain any G-sequence of positive length, we define the G-depth \(A\) to be 0 if the zero ideal of \(A\) has irreducible minimal primary components (i.e. the empty set \(\emptyset \subset A\) makes up a G-sequence of length 0), otherwise G-depth \(A = -\infty\) (cf. \([M_1, \text{Definition 4.1}]\)).

0.3. A ring \(A\) is said to be \(G_n\) if G-depth \(A_p > \min(n, \text{ht } p)\) for every \(p \in \text{Spec } A\) (cf. \([M_1, \text{Definition 4.5}]\)).

In \([M_2, \text{Theorem 2.1}]\) we gave several equivalent characterizations for the \(G_n\) condition, showing in particular that a ring \(A\) is \(G_n\) iff it is \(S_n\) (i.e. depth \(A_p > \min(n, \text{ht } p)\) for every \(p \in \text{Spec } A\)) and \(A_p\) is a local Gorenstein ring for every \(p \in \text{Spec } A\) such that \(\text{ht } p < n\). Here we can add the following:

0.4. If \(A\) is an \(S_n\) ring with open Gorenstein locus and \(\mathfrak{g} \subset A\) is the ideal defining the non-Gorenstein locus of \(A\), then \(A\) is \(G_n\) iff \(\text{ht } \mathfrak{g} > n\).

1. Principal results and examples.

Proposition 1.1. Let \(A\) be any local C. M. ring with open Gorenstein locus and let \(\mathfrak{g} \subset A\) be the ideal which defines the non-Gorenstein locus of \(A\); then:

(a) if \(\text{ht } \mathfrak{g} = 0\), \(A\) does not contain any G-sequence;

(b) if \(\text{ht } \mathfrak{g} > 0\), all maximal G-sequences of \(A\) have the same length (exactly equal to \(K - \dim A\) or \(K - \dim A - 1\), according as \(A\) is Gorenstein or not).

Proof. (a) \(A\) is not a \(G_0\) ring (cf. 0.4) so it is clear that \(A\) does not contain any G-sequence of length \(= 0\) (cf. \([M_2, \text{Osservazione (iii)}]\)). On the other hand one can easily see that \(A\) does not even contain G-sequences of positive length since if there existed \(x \subset A\) a G-sequence of length \(= r > 0\), then both \(A/(x)\) and \(A\) would be \(G_0\) rings (respectively by \([M_2, \text{Osservazione (iv)}]\) and \([M_3, \text{Lemma 2.2}]\)) and this would clearly give a contradiction.

(b) First of all we observe that if \(A\) is a Gorenstein ring, then manifestly all maximal G-sequences of \(A\) must have the same length exactly equal to \(K - \dim A\) since it follows directly from the definitions that all regular sequences of any (not necessarily local) Gorenstein ring are also G-sequences (cf. \([B, \text{Fundamental Theorem}]\), and \([M_1, \text{Definition 2.1}]\)). Therefore to complete our proof we have only to examine the case \(\mathfrak{g} \notsubset A\). Here \(\text{ht } \mathfrak{g} > 0\) implies that for every \(p \in \text{Spec } A\) such that \(\text{ht } p = 0\), \(A_p\) is a local Gorenstein ring (cf. 0.4): hence all (minimal) primary components of the zero ideal in \(A\) are irreducible, i.e. the empty set \(\emptyset \subset A\) is a G-sequence of length \(= 0\) (cf. \([M_2, \text{Osservazione (vi)}]\)). This just proves our theorem in case \(K - \dim A = 1\) where \(\emptyset\) is actually the only (maximal) G-sequence of \(A\) (we are assuming \(A\) is not Gorenstein), so from now on we can suppose \(K - \dim A > 1\). Since \(A\) is a C. M. ring \(\text{ht } \mathfrak{g} > 0\) implies also that there exists some element \(i \in \mathfrak{g}\) which is regular in \(A\) and so can be completed to a maximal regular sequence of \(A\), say \(x = \{i, x_2, \ldots, x_m\}\) with \(m = K - \dim A\). We want to show that \(x' = \{x_2, \ldots, x_m\}\) is a G-sequence of \(A\); in this connection to say that \(x \subset A\) is a regular sequence means in particular that \(i \not\in \mathfrak{y}'\) for any \(\mathfrak{y}' \in \text{Ass } (A/(x'))\), i.e. \(A_{\mathfrak{y}'}\) is a local Gorenstein ring for every \(\mathfrak{y}' \in \text{Ass } (A/(x'))\) and this means that \(x'\) is a G-sequence, so \(\emptyset\) is not a maximal G-sequence in \(A\). Then let \(y \subset A\) be any maximal G-sequence of positive length \(= s < m\).
(recall that we are assuming A is not Gorenstein): for every $\mathcal{Q} \in \text{Ass} \left(A/(y) \right)$ clearly $\mathcal{Q} \supseteq \mathfrak{g}$ so there exists some element $j \in \mathfrak{g}$ which is a non-zero-divisor modulo (y) such that (y,j) is a regular sequence of length $= s + 1$. If $s < m - 1$, (y,j) can be completed to a maximal regular sequence of A, say (y,j,y_{s+2},\ldots,y_m); here applying the same argument as above we can see that (y,y_{s+2},\ldots,y_m) is a G-sequence of A containing y, contradicting the maximality of y, so all maximal G-sequences of A actually have length $= K - \dim A - 1$.

Corollary 1.2. If A is a local C. M. ring with open Gorenstein locus, then G-depth A is the length of any maximal G-sequence in A (as usual G-depth $A = -\infty$ if A does not contain G-sequences of any length).

Corollary 1.3. Let A be any S_n local ring with $K - \dim A > n > 1$. If the Gorenstein locus of A is open, then either A does not contain any G-sequence or all maximal G-sequences of A have length $\geq n - 1$.

Proof. Let \mathfrak{g} be the ideal which defines the non-Gorenstein locus of A; we can observe that, as in Proposition 1.1, our conclusion and proof depend on height \mathfrak{g}. Precisely: $\text{ht } \mathfrak{g} = 0$ implies both A does not contain any G-sequence of length $= 0$ (in fact in this case A is not G_0) and A does not contain any G-sequence of positive length (namely if $x = (x_1,\ldots,x_r)$ would be a G-sequence of length $= r > 0$, then for all $i \in \{1,\ldots,r\}$ x_i would be a G-sequence which generates an unmixed ideal (cf. [S, Theorem 2.2]), so $A/(x_i)$ and then A (by [R. F., Proposition 3]) would be S_1 and G_0 rings contradicting the fact that A is not G_0).

$\text{ht } \mathfrak{g} > 0$ implies \emptyset is not a maximal G-sequence (we can use an argument like that of Proposition 1.1). Then let $x \subseteq A$ be any maximal G-sequence of length $= s > 0$, if $s < n - 1$ for every $\mathfrak{b} \in \text{Ass} \left(A/(x) \right)$, $\mathfrak{b} \supseteq \mathfrak{g}$, (x) is an unmixed ideal by [S, Theorem 2.2], so there exists some element $j \in \mathfrak{g}$ which is a non-zero-divisor modulo (x). Considering the regular sequence (x,j), we can conclude, as in Proposition 1.1:

Remark I. From [M3, Lemma 2.2] and [R. F., Proposition 3], we can deduce some information about the existence of G-sequences in a local ring A without having resort to the hypothesis that the Gorenstein locus of A is open; precisely we can say:

(i) In any local non-G_0 ring A which satisfies the "saturated chain condition on prime ideals", there exist no G-sequences.

(ii) In any local non-G_0 ring A there exist no G-sequences (of any length) which generated unmixed ideals, but a priori we do not have any information about possible G-sequences which generated mixed ideals.

Remark II. From the proof of Corollary 1.3 we can deduce that in a local S_n ring A ($K - \dim A > n > 1$) which is G_0 and has open Gorenstein locus, there exist G-sequences of length $= \text{depth } A - 1$ but a priori we cannot say if this must be the length of every maximal G-sequence of A, so actually we do not know whether there may exist maximal G-sequences of different lengths in A.

Recall explicitly the following notation introduced in [W.I.T.O., Definition 1.7].
Definition 1.4. A ring homomorphism \(\varphi: A \to B \) is Gorenstein if it is flat and has Gorenstein fibres.

Lemma 1.5. Let \(A \) be any ring with open Gorenstein locus. Then, for every Gorenstein homomorphism \(\varphi: A \to B \), the Gorenstein locus of \(B \) is open.

Proof. Let \(f: Y = \text{Spec } B \to \text{Spec } A = X \) be the induced morphism and let \(U \subseteq X \) be the Gorenstein locus of \(A \). For every \(\mathfrak{B} \in f^{-1}(U) \), \(B_{\mathfrak{B}} \) is Gorenstein; namely, putting \(\nu = f(\mathfrak{B}) \), clearly \(\nu \subseteq U \) so the local homomorphism \(\psi: A_{\mathfrak{B}} \to B_{\nu} \) is flat with \(A_{\mathfrak{B}} \) Gorenstein (since \(\nu \subseteq U \)) and \(B_{\mathfrak{B}}/\nu B_{\mathfrak{B}} \) Gorenstein (since it is a localization of the fibre of \(\varphi \) at \(\nu \)). On the other hand, for every \(\mathfrak{Q} \in Y - f^{-1}(U) \), \(B_{\mathfrak{Q}} \) is not Gorenstein since putting \(q = \mathfrak{Q} \cap \mathfrak{A} \) clearly \(q \not\subseteq U \), so \(A_{q} \) is not Gorenstein. Therefore the Gorenstein locus of \(B \) is precisely \(f^{-1}(U) \) which, by the hypothesis, is clearly open.

Proposition 1.6. Let \((A, \mathfrak{m})\) be any local C. M. ring with open Gorenstein locus. Then for every local Gorenstein homomorphism \(\varphi: A \to B \), we have

\[
\text{G-depth } B = \text{G-depth } A + \text{G-depth } B/\mathfrak{m} B.
\]

Proof. Observe that under the given hypotheses not only \(B \) is a (local) C. M. ring (cf. [D, Corollary 5.1]) but also its Gorenstein locus is open (cf. Lemma 1.5): therefore \(\text{G-depth } B \) is actually well defined (cf. Corollary 1.2). In addition, we notice that if \(A \) is Gorenstein, then there is nothing to prove, since in that case \(B \) is a (local) Gorenstein ring by [W.I.T.O., Theorem 1], so clearly

\[
\text{G-depth } B = K \cdot \text{dim } B = K \cdot \text{dim } A + K \cdot \text{dim } B/\mathfrak{m} B
\]

Then, to show our contention, we only have to examine the case \(A \) is not Gorenstein which, according to Proposition 1.1, splits into \(\text{G-depth } A = -\infty \) and \(\text{G-depth } A = K \cdot \text{dim } A - 1 \) (automatically \(\geq 0 \)). If \(\text{G-depth } A = -\infty \), then we cannot have \(\text{G-depth } B \geq 0 \), since that would mean \(B \) is at least \(\mathcal{G}_0 \) and hence also \(A \) would be at least \(\mathcal{G}_0 \) (cf. [M1, Theorem 5.1]), contradicting \(\text{G-depth } A = -\infty \); then

\[
\text{G-depth } B = -\infty = -\infty + K \cdot \text{dim } B/\mathfrak{m} B
\]

If \(0 \leq \text{G-depth } A = K \cdot \text{dim } A - 1 \), then \(B \) is a \(\mathcal{G}_0 \) ring (cf. [M1, Corollario 5.2]), that is \(\text{G-depth } B \geq 0 \). Moreover, since we are assuming \(A \) is not Gorenstein, we cannot have \(\text{G-depth } B = K \cdot \text{dim } B \) (cf. [W.I.T.O., Theorem 1]); thus again

\[
\text{G-depth } B = K \cdot \text{dim } B - 1 = K \cdot \text{dim } A - 1 + K \cdot \text{dim } B/\mathfrak{m} B
\]

Remark III. Observe that if the local C. M. ring \((A, \mathfrak{m})\) has the canonical module \(K_A \), then every local flat ring homomorphism \(\varphi: A \to B \) such that
B/mB is Gorenstein (i.e. $K_B \simeq K_A \otimes_A B$ (cf. [H.K., Satz 6.14.])) is actually a Gorenstein homomorphism. Namely, using the same notations as in Lemma 1.5, for any $p \in X$, the fibre of φ at p is Gorenstein since (cf. [E.G.A., IV$_2$, Lemma 7.3.2]) for every $\mathfrak{p} \in f ^{-1}(p)$, $B_{\mathfrak{p}}/pB_{\mathfrak{p}}$ is Gorenstein, being

$$(K_{A_p}) \otimes_{A_p} B_{\mathfrak{p}} = (K_A) _X \otimes_A A_{\mathfrak{p}} \otimes_{A_p} B_{\mathfrak{p}} = K_A \otimes_A A_{\mathfrak{p}} \otimes_{A_p} B_{\mathfrak{p}} = K_A \otimes_A B_{\mathfrak{p}}$$

(cf. [R, (3) Theorem] and [H.K., Korollar 5.25]). Notice that the hypothesis “B/mB is Gorenstein” cannot be avoided; namely, we can easily see that Proposition 1.6 does not hold for a local flat homomorphism $\varphi: A \to B$ of complete, equidimensional local rings such that A is Gorenstein and B is G_0 but not Gorenstein (e.g., fix a field k, take

$$A = k[[UN]] \quad (N = \text{l.c.m. } (6, 7, 8, 9)),$$

$$B = k[[x,y,z,t]]/(t^2 - x^2 - yt, y^2 - xz, yz - xt),$$

and φ the inclusion map (which is clearly flat and local); what we get is G - depth $A = 1$, G - depth $B = 0$ (B is a 1-dimensional complete integral domain which is not Gorenstein (cf. [K, Theorem]), and G - depth $B/mB = -\infty$).

Finally we are going to list explicitly some examples of local flat ring homomorphisms for which Proposition 1.6 holds.

1.7. Let (A, m) be any local C.M. ring with residue field k such that K_A exists. Then:

(i) If x is an indeterminate, for every maximal ideal $\mathfrak{m} \subset A[x]$ such that $\mathfrak{m} \cap A = m$, we have G - depth $A[x]_{\mathfrak{m}} = G$ - depth $A + 1$ (in fact the fibre $k \otimes_A A[x]_{\mathfrak{m}}$ is isomorphic to the 1-dimensional Gorenstein ring $k[x]$ localized at the maximal ideal $\mathfrak{m} = A[x]_k[x]$ (cf. [G.S., Example 12.1])).

(ii) If F is a finite abelian group, for every maximal ideal $\mathfrak{m} \subset A[F]$, we have G - depth $A[F]_{\mathfrak{m}} = G$ - depth A (in fact $k \otimes_A A[F]_{\mathfrak{m}}$ is isomorphic to the 0-dimensional Gorenstein ring $k[F]$ localized at the maximal ideal $\mathfrak{m} = A[F]_k[F]$ (cf. [P, Corollaire 2])).

(iii) If b^A is the henselization of A with respect to m, we have G - depth $b^A = G$ - depth A (in fact $k \otimes_A b^A = k \otimes_A b^A / m b^A = k$ (cf. [E.G.A., IV$_4$, Theorem 18.6.6])).

(iv) If \hat{A} is the m-adic completion of A, we have G - depth $\hat{A} = G$ - depth A (in fact $k \otimes_A \hat{A} \simeq \hat{A}/m \hat{A} \simeq k$ (cf. [D, §6.A5])).

(v) If $A[[x]]$ is the formal power series ring (in one indeterminate) over A, we have G - depth $A[[x]] = G$ - depth $A + 1$ (in fact the fibres of $A \to A[[x]]$ are canonically isomorphic to the fibres of $B \to B[[x]]$ where B is a local Gorenstein ring such that $A = B/b$ (cf. [R, (3) Theorem]) at the prime ideals of B containing b, and $B \to B[[x]]$ is a local flat ring homomorphism whose fibre at the closed point of Spec B is equal to $k \otimes_B B[[x]]$ which is clearly a (local) 1-dimensional Gorenstein ring (cf. [G.S., Theorem 9.8] and [W.I.T.O., Theorem 2])).
REFERENCES

[M2] ———, Alcune caratterizzazioni degli anelli G_m, Matematiche (Catania) 28 (1973).

ITALIAN COUNCIL OF RESEARCH (C.N.R.), PIAZZALE DELLE SCIENZE 7, ROME, ITALY

Current address: Istituto di Matematica, Università di Genova, 16132-via L. B. Alberti, 4, Genova, Italy