Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On maximality of Gorenstein sequences


Author: Maria Grazia Marinari
Journal: Proc. Amer. Math. Soc. 59 (1976), 33-38
MSC: Primary 13H10
DOI: https://doi.org/10.1090/S0002-9939-1976-0441956-7
MathSciNet review: 0441956
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is well known that if $ A$ is a Gorenstein ring, then every ideal generated by a regular sequence $ {\text{x}} \subset A$ has irreducible (minimal) primary components. This feature led us to define a Gorenstein sequence of a ring $ A$ to be any ordered regular sequence $ {\text{x}} = \{ {x_1}, \ldots ,{x_r}\} \subset A$ such that for every $ i \in \{ 1, \ldots ,r\} $ the ideal $ ({x_1}, \ldots ,{x_i})$ has irreducible minimal primary components. We showed for Gorenstein sequences ( $ {\mathbf{G}}$-sequences for short) some parallels of well-known properties of regular sequences and moreover by means of $ {\mathbf{G}}$-sequences we gave the following natural characterization of local Gorenstein rings: ``A local ring $ (A,\;\mathfrak{m})$ is Gorenstein iff $ \mathfrak{m}$ contains a $ {\mathbf{G}}{\text{ - sequence of length = }}K{\text{ - }}\dim A$".

In this note we are going to give some information about ``maximality'' of $ {\mathbf{G}}$-sequences in a local ring $ A$, producing sufficient conditions on $ A$ in order that the maximal $ {\mathbf{G}}$-sequences of $ A$ all have the same length, i.e. in order to give a ``good'' definition of $ {\mathbf{G}}$-depth $ A$. Furthermore, we will state some results about the $ {\mathbf{G}}$-depth behavior with respect to local flat ring homomorphisms.


References [Enhancements On Off] (What's this?)

  • 1. [B| H. Bass, On the ubiquity of Gorenstein rings, Math. Z. 82 (1963), 8-28. MR 27 #3669. MR 0153708 (27:3669)
  • [De M. I.] F. De Meyer and E. Ingraham, Separable algebras over commutative rings, Lecture Notes in Math., vol. 181, Springer-Verlag, Berlin and New York, 1971. MR 0280479 (43:6199)
  • [D] J. Dieudonné, Topics in local algebra, Notre Dame Math. Lectures, no. 10, Univ. of Notre Dame Press, Notre Dame, Ind., 1967. MR 39 #2748. MR 0241408 (39:2748)
  • [E.G.A.] A. Grothendieck, Éléments de géométrie algébrique, Inst. Hautes Études Sci. Publ. Math. No. 24 (1965); ibid, No. 32 (1967). MR 33 #7330; 39 #220.
  • [G. S.] S. Greco and P. Salmon, Topics in $ m$-adic topologies, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 58, Springer-Verlag, Berlin and New York, 1971. MR 44 #190. MR 0282956 (44:190)
  • [H. K.] J. Herzog and E. Kunz, Der kanonische Modul eines C. M. Rings, Lecture Notes in Math., vol. 238, Springer-Verlag, Berlin and New York, 1971. MR 0412177 (54:304)
  • [K] E. Kunz, The value-semigroup of a one-dimensional Gorenstein ring, Proc. Amer. Math. Soc. 25 (1970), 748-751. MR 42 #263. MR 0265353 (42:263)
  • [M$ _{1}$] M. G. Marinari, Successioni di Gorenstein $ e$ proprietà $ {{\mathbf{G}}_n}$, Rend. Sem. Mat. Univ. Padova 48 (1972). MR 0347811 (50:312)
  • [M$ _{2}$] -, Alcune carat terizzazioni degli anelli $ {{\mathbf{G}}_n}$, Matematiche (Catania) 28 (1973).
  • [M$ _{3}$] -, Gorenstein sequences and $ {{\mathbf{G}}_n}$ condition, J. Algebra (to appear).
  • [P] M. Paugam, La condition $ ({G_q})$ de Ischebeck, C. R. Acad. Sci. Paris Sér. A-B 276 (1973), A109-A112. MR 49 #10683.
  • [R. F.] I. Reiten and R. Fossum, Commutative $ n$-Gorenstein rings, Math. Scand. 31 (1972). MR 0376664 (51:12839)
  • [R] I. Reiten, The converse to a theorem of Sharp on Gorenstein modules, Proc. Amer. Math. Soc. 32 (1972), 417-420. MR 45 #5128. MR 0296067 (45:5128)
  • [S] R. Y. Sharp, Cousin complex characterizations of two classes of commutative Noetherian rings, J. London Math. Soc. (2) 3 (1971), 621-624. MR 45 #3392. MR 0294323 (45:3392)
  • [W.I.T.O.] K. Watanabe, et al., On tensor products of Gorenstein rings, J. Math. Kyoto Univ. 9 (1969), 413-423. MR 41 #1716. MR 0257062 (41:1716)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 13H10

Retrieve articles in all journals with MSC: 13H10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1976-0441956-7
Keywords: Commutative noetherian Cohen-Macaulay Gorenstein ring, Gorenstein sequence, canonical module
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society