The rate of growth of the denominators in the Oppenheim series

Author:
János Galambos

Journal:
Proc. Amer. Math. Soc. **59** (1976), 9-13

MSC:
Primary 10K10

DOI:
https://doi.org/10.1090/S0002-9939-1976-0568142-4

MathSciNet review:
0568142

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A Borel-Cantelli lemma is proved for a sequence of functions of the denominators in the Oppenheim expansion of real numbers. This is then applied to the study of the rate of growth of the denominators in the above series. The laws obtained are almost sure type, that is, valid for (Lebesgue) almost all in the unit interval. The results are new even for the classical expansions of Engel, Sylvester and Cantor (product).

**[1]**O. Barndorff-Nielsen,*On the rate of growth of the partial maxima of a sequence of independent identically distributed random variables*, Math. Scand.**9**(1961), 383-394. MR**25**#2625. MR**0139189 (25:2625)****[2]**J. Galambos,*The ergodic properties of the denominators in the Oppenheim expansion of real numbers into infinite series of rationals*, Quart. J. Math. Oxford Ser. (2)**21**(1970), 177-191. MR**41**#3423. MR**0258777 (41:3423)****[3]**-,*On infinite series representations of real numbers*, Compositio Math.**27**(1973), 197-204. MR**48**#11026. MR**0332700 (48:11026)****[4]**-,*An iterated logarithm type theorem for the largest coefficient in continued fractions*, Acta Arith.**25**(1973/74), 359-364. MR**49**#8952. MR**0344212 (49:8952)****[5]**-,*Further ergodic results on the Oppenheim series*, Quart. J. Math. Oxford Ser. (2)**25**(1974), 135-141. MR**50**#260. MR**0347759 (50:260)****[6]**A. Oppenheim,*The representation of real numbers by infinite series of rationals*, Acta Arith.**21**(1972), 391-398. MR**46**#8982. MR**0309877 (46:8982)****[7]**W. Phillip,*A conjecture of Erdös on continued fractions*, Acta Arith.**28**(1975/76), 379-386. MR**0387226 (52:8069)****[8]**F. Schweiger,*Metrische Sätze über Oppenheimentwicklungen*, J. Reine Angew. Math.**254**(1972), 152-159. MR**45**#6781. MR**0297729 (45:6781)****[9]**-,*Gedämpfte zahlentheoretische Transformationen*, Monatsh. Math.**79**(1975), 67-73. MR**0360500 (50:12948)****[10]**W. Vervaat,*Success epochs in Bernoulli trials*(*with applications in number theory*), Math. Centre Tracts, no. 42, Math. Centrum, Amsterdam, 1972. MR**48**#7331. MR**0328989 (48:7331)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
10K10

Retrieve articles in all journals with MSC: 10K10

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1976-0568142-4

Keywords:
Oppenheim series,
denominators,
Borel-Cantelli lemma,
asymptotic laws,
,
,
Engel series,
Sylvester series,
Cantor product

Article copyright:
© Copyright 1976
American Mathematical Society