A NOTE ON WALSH-FOURIER SERIES

WO-SANG YOUNG

Abstract. It is shown that the double sequence \(\{ \lambda_{mn} \} \) with \(\lambda_{mn} = 1 \) if \(n < m \) and 0 otherwise is an \(L^p \) multiplier for the Walsh system in two dimensions only if \(p = 2 \). This result is then used to show that the one-dimensional trigonometric system and the Walsh system are nonequivalent bases of the Banach space \(L^p[0, 1] \), and hence have different \(L^p \) multipliers, \(1 < p < \infty, p \neq 2 \).

1. Let \(\{ \lambda_{mn} \}_{-\infty < m, n < \infty} \) be the double sequence defined by \(\lambda_{mn} = 1 \) if \(n < m \) and 0 otherwise. For

\[
\sum_{m,n=-\infty}^{\infty} a_{mn} e^{2\pi i (mx + ny)} \in L^p \left([0, 1] \times [0, 1]\right),
\]

let

\[
T_1 f \sim \sum_{m,n=-\infty}^{\infty} a_{mn} \lambda_{mn} e^{2\pi i (mx + ny)}.
\]

It is well known that \(T_1 \) is bounded on \(L^p([0, 1] \times [0, 1]), 1 < p < \infty \). This is a consequence of the one-dimensional result of M. Riesz for the conjugate function \([6, 1, p. 253]\). The \(L^p \) boundedness of \(T_1 \) was used, for example, in C. Fefferman's proof of the almost everywhere convergence of double Fourier series [1].

We now turn our attention to the Walsh system \(\{ w_n \} \). For

\[
\sum_{m,n=0}^{\infty} a_{mn} w_m(x) w_n(y) \in L^p \left([0, 1] \times [0, 1]\right),
\]

consider the corresponding operator \(T_2 \) defined by

\[
T_2 f \sim \sum_{m,n=0}^{\infty} a_{mn} \lambda_{mn} w_m(x) w_n(y).
\]

Because of the great similarity between the Walsh system and the trigonometric system, one would expect \(T_2 \) to be bounded on \(L^p([0, 1] \times [0, 1]), 1 < p < \infty \). However, this is not the case. In \(\S 2 \) we will show that \(T_2 \) is not bounded on \(L^p \) except for \(p = 2 \). This result is then used in \(\S 3 \) to give a negative answer to a question of P. Enflo: Are the trigonometric system and the Walsh system equivalent bases of the Banach space \(L^p[0, 1], 1 < p < \infty, p \neq 2 \)? Finally in \(\S 4 \) we will deduce from the nonequivalence that the
one-dimensional Walsh system and trigonometric system have different L^p multipliers, $1 < p < \infty$, $p \neq 2$.

2. Let $\{r_n\}_{n \geq 0}$ denote the Rademacher functions and $\{w_n\}_{n \geq 0}$ the Walsh functions defined on $I = [0, 1]$. For any two real numbers with dyadic expansions $a = \sum_{j=-\infty}^{\infty} \alpha_j 2^j, \quad b = \sum_{j=-\infty}^{\infty} \beta_j 2^j, \quad \alpha_j, \beta_j = 0$ or 1, let $a + b = \sum_{j=-\infty}^{\infty} [\alpha_j - \beta_j] 2^j$. It is understood that we use the finite representation in the case of a dyadic rational. Basic properties of the Walsh functions can be found in [2].

Theorem 1. T_2 is bounded on $L^p(I^2)$ if and only if $p = 2$.

Proof. The case $p = 2$ is trivial by Parseval's formula. It is sufficient to show that T_2 is not bounded on L^p for $p < 2$, for then the theorem will follow by a duality argument.

Instead of dealing with T_2 we consider an equivalent operator T'_2 defined on $L^p(I^2)$ as follows. Let $A = \{(m, n) : 0 < n < m, m = 0, 1, \ldots \}$. For $f = \sum_{m,n} a_{mn} w_m(x) w_n(y)$, let $T'_2 f = \sum_{(m,n) \in A} a_{mn} w_m(x) w_n(y)$. Suppose g is the function on I^2 defined by $g(x, y) = f(x, x + y)$. Since $w_n(x + y) = w_n(x) w_n(y)$ and $w_{m+n} = w_m w_n$, we have $T'_2 g(x, y) = T_2 f(x, x + y)$. Therefore the boundedness of T_2 is equivalent to that of T'_2.

We will define a sequence of functions $\{f_k\}$ on I^2 and show that

$$\|T'_2 f_k\|_p / \|f_k\|_p \to 0 \quad \text{as} \quad k \to \infty.$$

Let

$$f_k = \sum_{l=1}^{k} f_{kl}$$

where

$$f_{kl}(x, y) = 2^{-k} r_{l-1}(x) \prod_{j=0}^{k-1} (1 + r_j(y)).$$

We first note that

$$\|f_{kl}\|_p^p = \left| \int 2^{-k} \prod_{j=0}^{k-1} (1 + r_j(y)) \, dy \right|^p = 2^{-kp} \int_{[0,2^{-k}]} 2^{kp} \, dy = 2^{-k}.$$

Moreover, since $\int [\sum_{l=0}^{k} r_l(x)]^p \, dx \leq C_p k^{p/2}$ by Khintchin's inequality [6, I, p. 213], we have

$$\|f_k\|_p^p = \left| \int \left[\sum_{l=0}^{k} r_l(x) \right]^p \, dx \right|^p \leq C_p k^{p/2} 2^{-k},$$

where C_p denotes a constant depending only on p.

On the other hand, for $1 < l < k$,

$$T'_2 f_{kl}(x, y) = 2^{-k} \sum_{n < m+n, m} r_{l-1}(s) w_m(x) \int r_{l-1}(t) w_n(t) \, dt \cdot \prod_{j=0}^{k-1} (1 + r_j(t)) w_n(x) w_n(y).$$
Now
\[\int r_{l-1}(s)w_m(s) \, dx = 1 \text{ if } m = 2^{l-1} \]
on otherwise. Also
\[\int \prod_{j=0}^{k-1} (1 + r_j(t))w_n(t) \, dt = 1 \text{ if } n < 2^k \]
\[= 0 \text{ if } n \geq 2^k. \]
Therefore
\[(3) \quad T_{2^k}f_{kl}(x, y) = 2^{-k} \sum_{n < 2^{l-1} + n; n < 2^k} w_n(y)w_{2^{l-1}}(x). \]
Let \(n = \sum_{j=0}^{\infty} \varepsilon_j 2^j \) with \(\varepsilon_j = 0 \) or 1. We observe that \(n < 2^{l-1} + n \) if and only if \(\varepsilon_{l-1} = 0 \). Therefore
\[\sum_{n < 2^{l-1} + n; n < 2^k} w_n(y) = \prod_{0 < j < l; j \neq l-1} (1 + r_j(y)) \prod_{0 < j < k} (1 + r_j(y + 2^{-j})) \]
\[= \frac{1}{2} \left[\prod_{0 < j < k} (1 + r_j(y)) + \prod_{0 < j < k} (1 + r_j(y + 2^{-j})) \right]. \]
From (3) and (4), we have
\[T_{2^k}f_{kl}(x, y) = \frac{1}{2} \left[f_{kl}(x, y) + f_{kl}(x, y + 2^{-l}) \right], \]
and hence
\[T_{2^k}f_k(x, y) = \frac{1}{2} f_k(x, y) + \frac{1}{2} \sum_{l=1}^{k} f_{kl}(x, y + 2^{-l}). \]
Since \(f_k(x, y) \) and \(f_{kl}(x, y + 2^{-l}), \ l = 1, \ldots, k, \) have mutually disjoint supports, it follows from (1) that
\[(5) \quad \|T_{2^k}f_k\|_p > 2^{-p} \sum_{l=1}^{k} \|f_{kl}\|_p = 2^{-p} k 2^{-k}. \]
Combining (2) and (5), we obtain, for \(p < 2, \)
\[\|T_{2^k}f_k\|_p/\|f_k\|_p > 2^{-1} C_p^{-1} k^{(1/p - 1/2)} \to \infty \text{ as } k \to \infty. \]
This completes the proof of Theorem 1.

3. It is known that \(\{ \cos \pi nx \} \) and \(\{ w_n \} \) are bases of the Banach space \(L^p(I) \), \(1 < p < \infty. \) (See [6, I, p. 266] and [4].) We say that the sequences \(\{ u_n \}, \{ v_n \} \) of a Banach space are equivalent if for every sequence of numbers \(\{ a_n \}, \sum_{n=0}^{\infty} a_n u_n \) converges if and only if \(\sum_{n=0}^{\infty} a_n v_n \) converges. R. Askey, S. Wainger and J. E. Gilbert showed that \(\{ \cos \pi nx \} \) and certain classical orthonormal sequences are equivalent in \(L^p(I) \), \(1 < p < \infty. \) (See [3].) We have the following

Theorem 2. Let \(1 < p < \infty. \) \(\{ \cos \pi nx \} \) and \(\{ w_n \} \) are equivalent bases of \(L^p(I) \) if and only if \(p = 2. \)

Proof. Again the case \(p = 2 \) is trivial by Parseval’s formula. Suppose they
were equivalent in $L^p(I)$, $p \neq 2$. From this it would follow that $\{e^{2\pi i n x}\}_{n \geq 0}$ and $\{w_n\}$ are also equivalent in $L^p(I)$. (See [6, I, p. 253].) By the Banach-Steinhaus theorem, there exist constants C_p, $C'_p > 0$ such that for any sequence of numbers $\{a_n\}$,

$$C_p^{-1} \left\| \sum_{n=0}^{N} a_n e^{2\pi i n x} \right\|_p \leq \left\| \sum_{n=0}^{N} a_n w_n \right\|_p \leq C'_p \left\| \sum_{n=0}^{N} a_n e^{2\pi i n x} \right\|_p, \quad N > 0.$$

(See [5, p. 70].) Let $\{a_{mn}\}$ be any double sequence of numbers. Applying (6) first to the x-variable and then to the y-variable, we obtain

$$C_p^{-2} \left\| \sum_{m,n=0}^{N} a_{mn} e^{2\pi i (m+n y)} \right\|_p \leq \left\| \sum_{m,n=0}^{N} a_{mn} w_m(x) w_n(y) \right\|_p \leq C'_p \left\| \sum_{m,n=0}^{N} a_{mn} e^{2\pi i (m+n y)} \right\|_p, \quad N > 0.$$

(7)

Now, it follows from the corresponding one-dimensional result that for any function in $L^p(I^2)$, the square partial sums of both its trigonometric Fourier series and Walsh-Fourier series converge in $L^p(I^2)$. Therefore (7) implies the following: for any sequence of numbers $\{a_{mn}\}$, $f \sim \sum_{m,n=0}^{\infty} a_{mn} e^{2\pi i (m+n y)}$ for some $f \in L^p(I^2)$ if and only if $g \sim \sum_{m,n=0}^{\infty} a_{mn} w_m(x) w_n(y)$ for some $g \in L^p(I^2)$.

Suppose $g \in L^p(I^2)$ with $g \sim \sum_{m,n=0}^{\infty} a_{mn} w_m(x) w_n(y)$. Then $f \sim \sum_{m,n=0}^{\infty} a_{mn} e^{2\pi i (m+n y)} \in L^p(I^2)$. Hence

$$T_1 f \sim \sum_{m,n=0}^{\infty} a_{mn} \lambda_{mn} e^{2\pi i (m+n y)} \in L^p(I^2),$$

which implies

$$T_2 g \sim \sum_{m,n=0}^{\infty} a_{mn} \lambda_{mn} w_m(x) w_n(y) \in L^p(I^2).$$

Therefore T_2 maps $L^p(I^2)$ into $L^p(I^2)$. By the closed graph theorem, T_2 is bounded on $L^p(I^2)$, contradicting Theorem 1. This proves Theorem 2.

4. Let $\{u_n\}$ be one of the sequences $\{w_n\}$, $\{\cos \pi n x\}$ or $\{e^{2\pi i n x}\}_{n \geq 0}$. $M(L^p, \{u_n\})$ denotes the collection of all sequences $\{\lambda_n\}$ such that $f \sim \sum_{n=0}^{\infty} a_n u_n \in L^p(I)$ implies $g \sim \sum_{n=0}^{\infty} \lambda_n a_n u_n \in L^p(I)$. We will deduce from Theorem 2 the following

Theorem 3. $M(L^p, \{\cos \pi n x\}) \neq M(L^p, \{w_n\})$, $1 < p < \infty$, $p \neq 2$.

We note that in general two nonequivalent bases of $L^p(I)$ may have the same multipliers. See, for example, [5, p. 484 and p. 546].

Proof. Suppose they were equal. Since

$$M(L^p, \{\cos \pi n x\}) = M(L^p, \{e^{2\pi i n x}\}_{n \geq 0}),$$

we have $M(L^p, \{w_n\}) = M(L^p, \{e^{2\pi i n x}\}_{n \geq 0})$. Let $\sum_{n=0}^{\infty} a_n e^{2\pi i n x} \in L^p$. For every $t \in [0, 1]$,

$$\left\| \sum_{n=0}^{\infty} a_n e^{2\pi i n x} \right\|_{L^p} = \left\| \sum_{n=0}^{\infty} a_n e^{2\pi i n x} \right\|_{L^p},$$

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
so \(\{e^{2\pi int}\} \in M(L^p, \{e^{2\pi int}\})\), and hence belongs to \(M(L^p, \{w_n\})\). We assert that, moreover, there is a constant \(C_p\), depending only on \(p\), such that for every \(\sum_{n=0}^{\infty} a_n w_n \in L^p\),

\[
(8) \quad \left\langle \int \sum_{n=0}^{\infty} a_n e^{2\pi int} w_n(x) \right\rangle^p \leq C_p \int \left\| \sum_{n=0}^{\infty} a_n w_n(x) \right\|^p dx, \quad t \in [0, 1].
\]

We will prove (8) by contradiction. Suppose there was no such constant. Then there would exist \(\{t_k\} \subset [0, 1]\), \(\{a^{(k)}_{n}\}_{n,k \geq 0}\) and integers \(0 \leq N_0 < N_1 < \ldots\) such that

\[
\left\| \sum_{n=0}^{2^{N_k} - 1} a^{(k)}_n w_n \right\|_p = 1 \quad \text{and} \quad \left\| \sum_{n=0}^{2^{N_k} - 1} a^{(k)}_n e^{2\pi int} w_n \right\|_p > 2^{2k}.
\]

Observe that for \(n = 0, 1, \ldots, 2^{N_k} - 1\), \(n + 2^{N_k} = n + 2^{N_k} \in [2^{N_k}, 2^{N_k} + 1) \subset [2^{N_k}, 2^{N_k} + 1)\). Define a sequence \(\{\lambda_n\}\) by

\[
\lambda_n = \begin{cases}
0 & \text{if } 0 < n < 2^{N_0}, \\
2^{-k} e^{2\pi int} & \text{if } 2^{N_k} < n < 2^{N_{k+1}} , \quad k = 0, 1, \ldots.
\end{cases}
\]

Then, for \(\sum_{n=0}^{\infty} a_n e^{2\pi int} \in L^p\),

\[
\left\| \sum_{n=0}^{2^{N_k} - 1} \lambda_n a^{(k)}_n e^{2\pi int} \right\|_p \leq \sum_{k=0}^{\infty} 2^{-k} \left\| \sum_{n=2^{N_k}}^{2^{N_k} - 1} a^{(k)}_n e^{2\pi int} \right\|_p
\]

\[
< C_p \left\| \sum_{n=0}^{\infty} a^{(k)}_n e^{2\pi int} \right\|_p.
\]

(See [6, I, p. 266].) Hence \(\{\lambda_n\} \in M(L^p, \{e^{2\pi int}\})\). On the other hand, for \(k = 0, 1, \ldots\),

\[
\left\| \sum_{n=0}^{2^{N_k} - 1} a^{(k)}_n w_{2^{N_k} + n} \right\|_p = 1,
\]

whereas

\[
\left\| \sum_{n=0}^{2^{N_k} - 1} a^{(k)}_n \lambda_{2^{N_k} + n} w_{2^{N_k} + n} \right\|_p = 2^{-k} \left\| \sum_{n=0}^{2^{N_k} - 1} a^{(k)}_n e^{2\pi int} w_n \right\|_p > 2^k.
\]

By the closed graph theorem, \(\{\lambda_n\} \not\in M(L^p, \{w_n\})\), contradicting our assumption. This proves (8). Similarly we can show that there is a constant \(C_p\) such that for every \(\sum_{n=0}^{\infty} a_n e^{2\pi int} \in L^p\),

\[
(9) \quad \int \sum_{n=0}^{\infty} a_n w_n(x) e^{2\pi int} \, dt \leq C_p \int \sum_{n=0}^{\infty} a_n e^{2\pi int} \, dt, \quad x \in [0, 1].
\]

We will now show that (8) and (9) imply the equivalence of \(\{w_n\}\) and \(\{e^{2\pi int}\}\). To see this, let \(a_1, \ldots, a_N\) be any numbers. From (8), we have

\[
\int \int \sum_{n=0}^{N} a_n e^{2\pi int} w_n(x) \, dx dt \leq C_p \int \sum_{n=0}^{N} a_n w_n(x) \, dx.
\]
From (9), we have
\[\int \left| \sum_{n=0}^{N} a_n e^{2\pi int} \right|^p dt \leq C_p^p \int \left| \sum_{n=0}^{N} a_n w_n(x) e^{2\pi int} \right|^p dt dx. \]

Therefore \(\| \sum_{n=0}^{N} a_n e^{2\pi int} \|_p \leq C_p C_p' \| \sum_{n=0}^{N} a_n w_n \|_p \). Similarly, we have
\[\left\| \sum_{n=0}^{N} a_n w_n \right\|_p \leq C_p C_p' \left\| \sum_{n=0}^{N} a_n e^{2\pi int} \right\|_p. \]

This shows \(\{w_n\} \) and \(\{e^{2\pi int}\}_{n \geq 0} \) are equivalent, which contradicts Theorem 2. This completes the proof of Theorem 3.

Acknowledgement. The author would like to thank Professor R. A. Hunt and Professor A. P. Calderón for their suggestions.

References