A REMARK ON STRONGLY EXPOSING FUNCTIONALS

KA-SING LAU

Abstract. By using the concept of farthest points, we show that the set of strongly exposing functionals of a weakly compact convex subset in a Banach space X is a dense $G_δ$ in X^*. The construction also gives a new proof of existence of strongly exposed points in weakly compact convex sets.

Let K be a convex subset in a Banach space X, a point $x \in K$ is called a strongly exposed point of K if there exists an $f \in X^*$ such that (i) $f(x) > f(y)$ for all $y \neq x$ in K, (ii) for any sequence (x_n) in K with $f(x_n) \to f(x)$, $x_n \to x$ in norm. We call the above f a strongly exposing functional of K and use $K^λ$ to denote the set of strongly exposing functionals of K. Lindenstrauss [5] and Troyanski [6] proved that if K is a weakly compact convex subset in X, then K is the closed convex hull of its strongly exposed points. In [1], Anantharaman showed that if K is the closed convex hull of the range of a vector-valued measure (hence K is weakly compact) then $K^λ$ is a dense $G_δ$ in X^*. A similar conclusion has also been obtained by the author for weakly compact convex subsets in certain classes of Banach spaces [4]. In this note, by modifying the method in [4], we prove

Theorem 1. Let K be a weakly compact convex subset in a Banach space X; then $K^λ$ is a dense $G_δ$ in X^*.

In the proof, we will need the following propositions.

Proposition 2 (Troyanski). Let X be a weakly compact generated Banach space; then X admits an equivalent locally uniformly convex norm.

Proposition 3 (Lau). Let K be a weakly compact subset in a Banach space X; then the set

$$\{x \in X: \|x - z\| = \sup\{\|x - y\|: y \in K\} \text{ for some } z \in K\}$$

is a dense $G_δ$ in X.

We call the point z in the above proposition a farthest point of K [2], [3]. It is known that if X is locally uniformly convex, then a farthest point of a...
bounded convex subset is also a strongly exposed point.

Proof of the theorem. Note that

\[K^\lambda = \bigcap_{n=1}^{\infty} \left\{ f \in X^*: \text{diam} \left\{ x \in K : f(x) > \sup_{y \in K} f(y) - a \right\} < \frac{1}{n} \text{ for some } a > 0 \right\} \]

and the set on the right side is a \(G_\delta \) [1], [4]; hence it suffices to show the density of \(K^\lambda \) in \(X^* \). By a remark in [4] and Proposition 2, we may assume that \(X \) is weakly compact generated (say, by \(K \)) and locally uniformly convex. Let \(f \in X^* \) with \(\|f\| = 1 \). For \(\epsilon > 0 \), let \(C = f^{-1}(0) \cap 2\epsilon^{-1}B \) where \(B \) is the closed unit ball of \(X \). By a homothetic translation, we may let \(K \subseteq B \) but \(K \not\subseteq C \) (note that \(K^\lambda \) is unchanged). We will construct a point \(z \in K \) which is a strongly exposed point of the closed set \(\text{conv}(K \cup C) \). The corresponding strongly exposing functional \(g \) of \(\text{conv}(K \cup C) \) with \(\|g\| = 1 \) will satisfy \(\|f - g\| \leq \epsilon \) and also strongly exposes \(K \) at \(z \) (for details, cf. [4, Theorem 2.4]); hence this completes the proof.

Choose a point \(x_1 \in K \setminus C \) such that the set

\[S = \{ \alpha x_1 + \beta y : |\alpha|^2 + |\beta|^2 < 1, y \in C \} \]

does not contain \(K \) (we neglect the case that \(K \) is a singleton, \(x_1 \) may be chosen as midpoint of some line segment of \(K \) not lying in \(C \)). Since \(C \) is an absorbent subset of the hyperplane \(f^{-1}(0) \), \(S \) is an absorbent subset of \(X \). Let \(\|\cdot\| \) be the norm defined by \(S \); then \(|||\cdot||| \) is locally uniformly convex and equivalent to the original norm. There exists \(x_2 \in K \setminus S \) with \(||x_2|| - 1 = \alpha > 0 \). By Proposition 3, there exist points \(w \in X, z \in K \) with \(\|w\| \leq \alpha/2 \) and \(\beta = \|w - z\| = \sup\{\|w - y\| : y \in K\} \). For any point \(y \in C \),

\[\|y - w\| \leq \|w\| + \alpha/2 \leq 1 + \alpha/2 \leq \beta. \]

Hence \(z \) is also a farthest point of \(\text{conv}(K \cup C) \). It follows that \(z \) is a strongly exposed point of \(\text{conv}(K \cup C) \). Q.E.D.

We remark that the above construction yields another proof of the existence of strongly exposed points in weakly compact sets as in [5]. Moreover, we have

Corollary 4. Let \(K \) be a weakly compact convex subset in a Banach space \(X \); then for any bounded closed convex subset \(C \) such that \(K \not\subseteq C \), there exists a point \(x \in K \) which strongly exposes \(\text{conv}(K \cup C) \).

Proof. It follows easily from the above theorem and Theorem 2.4 in [4]: if \(K \) is a bounded closed convex subset in \(X \), then \(K^\lambda \) is a dense \(G_\delta \) if and only if for any bounded closed convex subset \(C \) such that \(K \not\subseteq C \), there exists a point \(x \in K \) which is a strongly exposed point of \(\text{conv}(K \cup C) \).
REFERENCES

Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260