Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Group rings with solvable $ n$-Engel unit groups


Authors: J. L. Fisher, M. M. Parmenter and S. K. Sehgal
Journal: Proc. Amer. Math. Soc. 59 (1976), 195-200
MSC: Primary 16A26
DOI: https://doi.org/10.1090/S0002-9939-1976-0417231-3
MathSciNet review: 0417231
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ KG$ be the group ring of a group $ G$ over a field of characteristic $ p \geqslant 0,\;p \ne 2,\;3$. Suppose $ G$ contains no element of order $ p$ (if $ p > 0$). Group algebras $ KG$ with unit group $ U(KG)$ solvable and $ n$-Engel are characterized.


References [Enhancements On Off] (What's this?)

  • [1] J. M. Bateman, On the solvability of unit groups of group algebras, Trans. Amer. Math. Soc. 157 (1971), 73-86. MR 43 #2118. MR 0276371 (43:2118)
  • [2] J. M. Bateman and D. B. Coleman, Group algebras with nilpotent unit groups, Proc. Amer. Math. Soc. 19 (1968), 448-449. MR 36 #5238. MR 0222186 (36:5238)
  • [3] A. A. Bovdi and S. V. Mihovski, Idempotents of crossed products, Dokl. Akad. Nauk SSSR 195 (1970), 263-265 = Soviet Math. Dokl. 11 (1970), no. 6, 1439-1441. MR 42 #7793. MR 0272912 (42:7793)
  • [4] L. K. Hua, On the multiplicative group of a field, Acad. Sinica Science Record 3 (1950), 1-6. MR 12, 584. MR 0039707 (12:584e)
  • [5] I. I. Khripta, Nilpotency of the multiplicative group of a group ring, Mat. Zametki 11 (1972), 191-200 = Math. Notes 11 (1972), no. 2, 119-124. MR 0311750 (47:312)
  • [6] S. Lang, Algebra, Addison-Wesley, Reading, Mass., 1965. MR 33 #5416. MR 0197234 (33:5416)
  • [7] C. Lanski, Some remarks on rings with solvable units, Ring Theory (Proc. Conf., Park City, Utah, 1971), Academic Press, New York, 1972, pp. 235-240. MR 49 #7311. MR 0342565 (49:7311)
  • [8] -, Subgroups and conjugates in semi-prime rings, Math. Ann. 192 (1971), 313-327. MR 44 #4047. MR 0286840 (44:4047)
  • [9] A. Meir and S. K. Sehgal, Canad. Math. Bull. (to appear). MR 0493045 (58:12086)
  • [10] K. Motose and H. Tominaga, Group rings with solvable unit groups, Math. J. Okayama Univ. 15 (1971/72), 37-40. MR 46 #5423. MR 0306297 (46:5423)
  • [11] I. B. S. Passi, D. S. Passman and S. K. Sehgal, Lie solvable group rings, Canad. J. Math. 25 (1973), 748-757. MR 48 #4092. MR 0325746 (48:4092)
  • [12] D. S. Passman, Infinite group rings, Pure and Appl. Math., no. 6, Dekker, New York, 1971. MR 47 #3500. MR 0314951 (47:3500)
  • [13] D. J. S. Robinson, Finiteness conditions and generalized soluble groups, Parts 1, 2, Ergebnisse der Mathematik und ihrer Grenzgebiete, Bände 62, 63, Springer-Verlag, New York and Berlin, 1972. MR 48 #11314, 11315. MR 0332989 (48:11314)
  • [14] S. K. Sehgal, Lie properties in modular group algebras, Orders, Group Rings and Related Topics (Proc. Conf., Ohio State Univ., Columbus, Ohio), Lecture Notes in Math., vol. 353, Springer-Verlag, New York, 1973. MR 0340396 (49:5151)
  • [15] W. Sierpinski, Elementary theory of numbers, Parts I, II, Monografie Mat., Tom 19, 38, PWN, Warsaw, 1950, 1959; English transl., Monografie Mat., Tom 42, PWN, Warsaw, 1964. MR 31 #116. MR 930670 (89f:11003)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 16A26

Retrieve articles in all journals with MSC: 16A26


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1976-0417231-3
Keywords: Group rings, $ n$-Engel, solvable
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society