A CHARACTERISATION OF LIPSCHITZ CLASSES ON FINITE DIMENSIONAL GROUPS

WALTER R. BLOOM

Abstract. An analogue of a theorem of S. N. Bernstein is developed for certain metric locally compact abelian groups. This, together with a corresponding Jackson-type theorem, gives a characterisation in terms of their Fourier transforms of the Lipschitz functions defined on a compact abelian group with finite topological dimension.

Let G denote a metric locally compact abelian (LCA) group, with translation-invariant metric d, and character group Γ. We shall choose Haar measures λ, θ for G, Γ respectively so that Plancherel's theorem is valid.

It will be necessary to specify metrics for various standard groups, together with their finite products and homomorphic images. The real line \mathbb{R} will be taken with its usual Euclidean metric. For any infinite first countable 0-dimensional LCA group G we take a neighbourhood basis (V'_n) at zero consisting of a strictly decreasing sequence of compact open subgroups of G (for the existence of such a basis see [4, (7.7)]), any strictly decreasing sequence (β_n) of positive numbers tending to zero, and define d on $G \times G$ by

$$d(x,y) = \begin{cases} \beta_{n+1}, & x - y \in V'_n \setminus V'_{n+1}, \\ \beta_1, & x - y \not\in V'_1, \\ 0, & x = y. \end{cases}$$

It is easy to verify that d so obtained is a translation-invariant metric on G which generates the given topology. In the particular case when $G = \Delta_a$, the group of a-adic integers, where $a = (a_0, a_1, \ldots)$ and each a_n is an integer greater than 1, we take the previous metric defined with respect to the basis (Λ_n); here Λ_n is the compact open subgroup of Δ_a given by

$$\Lambda_n = \{x \in \Delta_a : x_k = 0 \text{ for } k < n\}.$$

Given metric LCA groups $(G, d), (G', d')$, the product group $G \times G'$ will always be metrised by

$$d''((x, x'), (y, y')) = \max\{d(x, y), d'(x', y')\}.$$

If H is a closed subgroup of G we metrise the quotient group G/H by
\[d^*(x + H, y + H) = \inf\{d(a, b): a \in x + H, b \in y + H\}. \]

The character group \(\Gamma_{G \times G'} \) of a product \(G \times G' \) is topologically isomorphic with the product \(\Gamma_G \times \Gamma_{G'} \); a typical element \([\gamma, \gamma']\) of \(\Gamma_{G \times G'} \) is defined by
\[[\gamma, \gamma']((x, x')) = \gamma(x)\gamma'(x'), \quad (x, x') \in G \times G', \]
where \(\gamma \in \Gamma_G, \gamma' \in \Gamma_{G'} \). Given sets \(T \subseteq \Gamma_G, T' \subseteq \Gamma_{G'} \) we shall write
\[[T, T'] = \{[\gamma, \gamma']: \gamma \in T, \gamma' \in T'\}. \]

If \(H \) is a closed subgroup of \(G \) then the character group \(\Gamma_{G/H} \) of \(G/H \) is topologically isomorphic with \(A(\Gamma, H) \) (the annihilator of \(H \) in \(\Gamma \)) where, to each \(\gamma \in A(\Gamma, H) \), there corresponds \(\gamma^+ \in \Gamma_{G/H} \) such that
\[\gamma^+(x + H) = \gamma(x), \quad x \in G. \]

Given \(\Xi \subseteq A(\Gamma, H) \) we write
\[\Xi^+ = \{\gamma^+ \in \Gamma_{G/H}: \gamma \in \Xi\}. \]

We shall also denote by \(\tau_H \) the natural homomorphism of \(G \) onto \(G/H \).

The theorems of Jackson and Bernstein (see [6, Chapter 3, Theorems (13.6), (13.20)]) respectively) connect the modulus of continuity of a function \(f \) with the degree of approximation of \(f \) by functions with (certain) compact spectra. The mean modulus of continuity with exponent \(p \) of \(f \) is given by
\[\omega(p; f; \delta) = \sup\{||f - f'||_p: d(a, 0) \leq \delta\}, \]
where \(\tau_a f: x \rightarrow f(x - a) \). If \(f \in L^p(G) \) has the property
\[\omega(p; f; \delta) = O(\delta^\alpha), \quad \delta > 0, \]
for some \(\alpha > 0 \), then we say that \(f \) is of Lipschitz order \(\alpha \). The functions of Lipschitz order \(\alpha \) form a subspace of \(L^p(G) \), which we denote by \(\text{Lip}_p^\alpha \).

The spectrum \(\Sigma(f) \) is defined as in [4, (40.21)] for \(f \in L^\infty(G) \), and by
\[\Sigma(f) = \bigcup \{\Sigma(\phi \ast f): \phi \in C_{00}(G)\} \]
(where \(C_{00}(G) \) denotes the space of continuous functions on \(G \) with compact support) for \(f \in L^p(G) \), \(p \in [1, \infty) \). When \(p = 1 \) we find that \(\Sigma(f) = \text{supp}(\hat{f}) \).

We write
\[L^p_T(G) = \{f \in L^p(G): \Sigma(f) \subseteq T\}, \]
\[E_T(p; f) = \inf\{||f - l||_p: l \in L^p_T(G)\}, \]
\[\omega_T(a) = \sup\{|\gamma(a) - 1|: \gamma \in T\}, \quad a \in G; \]
in the above expressions \(T \) is a nonvoid subset of \(\Gamma \).

Our first result is the following analogue of Bernstein's theorem:

Theorem 1. Let \(G \) be a metric LCA group. Suppose we have an ascending family \(\{T_n\}_{n=1}^\infty \) of symmetric compact neighbourhoods of zero in \(\Gamma \), a sequence
(\beta_n) of positive numbers smaller than 1, and positive constants \(C, K, \mu (\mu < 1)\) such that for each \(n \in \{1, 2, \ldots\}\), (a) \(\omega_{\tau_n}(a) \leq C\beta_n^{-1}d(a, 0), a \in G\), (b) \(\beta_{n+1} \leq \mu \beta_n\), (c) \(\theta(3T_n) \leq K\theta(T_n)\).

Then any \(f \in L^p(G)\) with the property that \(\mathcal{E}_{\tau_n}(p; f) = O(\beta_{n+1}^a)\) for some \(a > 0\) satisfies

\[
\omega(p; f; \delta) = O(\delta^a), \quad 0 < a < 1,
\]
\[
= O(\delta|\log \delta|), \quad a = 1,
\]
\[
= O(\delta), \quad a > 1.
\]

Proof. Firstly we note that, with a slight modification of the proof, the lemma in [1] is valid for any LCA group (consider weak*-cluster points rather than weak*-convergent subsequences). This guarantees that for each \(n\) there exists \(t_n^* \in L^G(G)\) for which \(\mathcal{E}_{\tau_n}(p; f) = \|f - t_n^*\|_p\). By assumption

\[
\|f - t_n^*\|_p \leq B\beta_{n+1}^a
\]

for some constant \(B > 0\). Defining

\[
s_1 = t_1^*; \quad s_n - t_n^* - t_{n-1}^* \quad (n \in \{2, 3, \ldots\})
\]

we have (recall that \((\beta_n)\) is decreasing)

\[
\|s_n\|_p \leq \|s_n - f\|_p + \|f - t_{n-1}^*\|_p \leq 2B\beta_{n+1}^a \quad (n \in \{2, 3, \ldots\}).
\]

Hence we can find \(B' > 0\) such that for all \(n \in \{1, 2, \ldots\}\)

\[
(1) \quad \|s_n\|_p \leq B'\beta_n^a.
\]

Now \(\sum_{k=1}^n s_k = t_n^*\) converges in \(L^p(G)\) to \(f\) as \(n \to \infty\). Consequently, for any \(a \in G\), \(\tau_a(\sum_{k=1}^n s_k) - \sum_{k=1}^n s_k\) converges in \(L^p(G)\) to \(\tau_a f - f\) as \(n \to \infty\), and

\[
(2) \quad \|\tau_a f - f\|_p \leq \sum_{k=1}^\infty \|\tau_a s_k - s_k\|_p \leq \sum_{k=1}^m \|\tau_a s_k - s_k\|_p + 2 \sum_{k=m+1}^\infty \|s_k\|_p.
\]

The proof of [2, Theorem 1.3] can be adapted to show that

\[
\|\tau_a s_k - s_k\|_p \leq 4\left(\theta(3\tau_k)/\theta(\tau_k)\right)^{1/2} \omega_{\tau_k}(a)\|s_k\|_p
\]
\[
\leq 4K^{1/2} C\beta_k^{-1}d(a, 0)\|s_k\|_p,
\]
the last step using (a) and (c) above. A combination of (1), (2) and (3) gives

\[
\omega(p; f; \delta) \leq 4K^{1/2} CB\delta \sum_{k=1}^m \beta_k^{a-1} + 2B' \sum_{k=m+1}^\infty \beta_k^a
\]

for any \(\delta > 0\).
Now suppose that \(0 < \delta \leq \beta_1 \), and choose \(m \geq 1 \) so that \(\beta_{m+1} < \delta \leq \beta_m \). Then, using (b),

\[
\omega(p; f; \delta) \leq 4K^{1/2}CB'\delta \sum_{k=1}^{m} \beta_k^{a-1} + 2B'\delta^a \sum_{k=m+1}^{\infty} \left(\frac{\beta_k}{\beta_{m+1}} \right)^a
\]

\[
\leq 4K^{1/2}CB'\delta \sum_{k=1}^{m} \beta_k^{a-1} + \frac{2B'}{1 - \mu^a} \delta^a.
\]

The estimates in the statement of the theorem now follow easily as in the proof of \([1, \text{Theorem 1}]\).

We shall determine some metric groups for which families \(\{T_n\}_{n=1}^{\infty}, (\beta_n) \) can be found satisfying (a)-(c) above.

The classical examples are the real line \(\mathbb{R} \) and the circle group \(\mathbb{T} \). For \(G = \mathbb{R} \), just put \(T_n = [-\beta_n^{-1}, \beta_n^{-1}] \) for any sequence \((\beta_n) \) satisfying (b) (here we identify \(\mathbb{T} \) with \(\mathbb{R} \)). The case \(G = \mathbb{T} \) is analogous.

It was shown in \([1]\) that every locally compact metric 0-dimensional abelian group \(G \) will admit such families; here we take \((\beta_n) \) to be any sequence of positive numbers smaller than 1 that satisfy (b) for some \(\mu \in (0, 1) \), and put

\[T_n = A(\Gamma, (x \in G: d(x, 0) < \beta_n)). \]

Other examples of groups admitting families \(\{T_n\}_{n=1}^{\infty}, (\beta_n) \) as above will be obtained from finite products and homomorphic images of 0-dimensional groups and the real line. In general for finite products we have

Theorem 2. Suppose \((G, d), (G', d')\) are metric LCA groups that admit families \(\{T_n\}_{n=1}^{\infty}, (\beta_n) \), \(\{T'_n\}_{n=1}^{\infty}, (\beta'_n) \) respectively, each satisfying (a)-(c) of Theorem 1. Then \(G \times G' \) also satisfies (a)-(c) with the families \(\{T_n \times T'_n\}_{n=1}^{\infty}, (\min\{\beta_n, \beta'_n\}) \), and \(\mu'' = \max\{\mu, \mu'\} \).

Proof. Property (a) follows easily from

\[
|\gamma \gamma'((a, a')) - 1| = |\gamma(a)\gamma'(a') - 1| \leq |\gamma(a) - 1| + |\gamma'(a') - 1|
\]

\[
\leq C\beta_n^{-1}d(a, 0) + C'\beta_n^{-1}d(a', 0')
\]

\[
\leq (C + C')\max\{\beta_n^{-1}, \beta_n^{-1}\}d''((a, a'), (0, 0'))
\]

for \([\gamma, \gamma'] \in [T_n, T'_n] \). The proof of (b) is trivial. For (c) we make use of the uniqueness property of Haar measure to obtain

\[
\theta''(3[T_n, T'_n]) = \theta''(3T_n, 3T'_n) = \eta\theta(3T_n)\theta'(3T'_n)
\]

\[
\leq \eta KK'\theta(T_n)\theta'(T'_n) = KK'\theta''([T_n, T'_n]),
\]

where \(\eta \) is some positive constant.

Our corresponding result for homomorphic images is a little more restrictive; here we consider \(G/H \), where \(H \) is a compact subgroup of \(G \).

Theorem 3. Let \(G \) be a metric LCA group that admits families \(\{T_n\}_{n=1}^{\infty}, (\beta_n) \) satisfying (a)-(c) of Theorem 1. If \(H \) is a compact subgroup of \(G \) then \(G/H \) also satisfies (a)-(c) with the families \(\{(T_n \cap A(\Gamma, H))\}_{n=1}^{\infty}, (\beta_n) \) and the same constant \(\mu \).
Proof. To show that (a) is satisfied, consider \(\gamma^+ \in (\Gamma_n \cap A(\Gamma, H))^+ \) and \(a \in G \). For any \(b \in a + H \),

\[
|\gamma^+(a + H) - 1| = |\gamma^+(b + H) - 1| = |\gamma(b) - 1| \leq C\beta_n^{-1} d(b, 0).
\]

Hence

\[
|\gamma^+(a + H) - 1| \leq C\beta_n^{-1} \inf\{d(b, 0) : b \in a + H\} = C\beta_n^{-1} d^*(a + H, H).
\]

Obviously (b) holds with the same \((\beta_n), \mu \). For the proof of (c) we require \(H \) to be compact, so that \(A(\Gamma, H) \) is open; here, for some positive constant \(\eta \),

\[
\theta^* (3(\Gamma_n \cap A(\Gamma, H))^+) = \theta^* (3(\Gamma_n \cap A(\Gamma, H))^+) = \eta \theta(3(\Gamma_n \cap A(\Gamma, H)))
\]

\[
\leq \eta K \theta(\Gamma_n \cap A(\Gamma, H)) = K \theta^* (\Gamma_n \cap A(\Gamma, H))^+,
\]

as required. □

Our main example of a finite dimensional compact abelian group, namely the \(\alpha \)-adic solenoid \(\Sigma_\alpha \), is not covered by Theorems 2 and 3. We define \(\Sigma_\alpha \) by

\[
\Sigma_\alpha = (\mathbb{R} \times \Delta_\alpha) / B,
\]

where \(B \) is the cyclic discrete subgroup of \(\mathbb{R} \times \Delta_\alpha \) generated by \((1, u) \), \(u = (1, 0, 0, \ldots) \).

A metric \(d^* \) will be given for \(\Sigma_\alpha \) according to the specifications in the beginning of this paper. We assert that the families \(\{T_n\}_{n=1}^\infty \) satisfy (a)–(c), where

\[
T_n = (\lbrack \lbrack -\beta_n^{-1}, \beta_n^{-1}] \cap A(\Gamma_n, \Lambda_n) \rbrack \cap A(\mathbb{R} \times \Delta_\alpha, B))^+.
\]

Now Theorems 2, 3 apply to show that (a), (b) hold. To prove that (c) holds for the above choice of \(\{T_n\}_{n=1}^\infty \), set

\[
\kappa = \theta^* (\lbrack \lbrack 0, 1 \rbrack \cap A(\Gamma_n, \Lambda_n) \rbrack \cap A(\mathbb{R} \times \Delta_\alpha, B))^+).
\]

For each \(m \in \mathbb{Z} \),

\[
\theta^* (\lbrack \lbrack (m, m + 1) \cap A(\Gamma_n, \Lambda_n) \rbrack \cap A(\mathbb{R} \times \Delta_\alpha, B))^+ = \theta^* ([m, 0]^+ + \lbrack \lbrack 0, 1 \rbrack \cap A(\Gamma_n, \Lambda_n) \rbrack \cap A(\mathbb{R} \times \Delta_\alpha, B))^+) = \kappa,
\]

where we have used the translation-invariance of \(\theta^* \) (note that \([m, 0] \in A(\mathbb{R} \times \Delta_\alpha, B) \)). Hence

\[
\frac{\theta^* (3T_n)}{\theta^* (T_n)} \leq \frac{\theta^* (\lbrack \lbrack [-3\beta_n^{-1}, 3\beta_n^{-1}] \cap A(\Gamma_n, \Lambda_n) \rbrack \cap A(\mathbb{R} \times \Delta_\alpha, B))^+)}{\theta^* (\lbrack \lbrack [-\beta_n^{-1}, \beta_n^{-1}] \cap A(\Gamma_n, \Lambda_n) \rbrack \cap A(\mathbb{R} \times \Delta_\alpha, B))^+)}
\]

\[
\leq (6\beta_n^{-1} + 2)/(2\beta_n^{-1} - 2) < 4
\]

for \(n \) suitably large, which is all we need to prove. □

Now Theorem 4 of [3] can be modified to give the following analogue of Jackson's theorem for \(\Sigma_\alpha \):

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Theorem 4. For each $n \in \{1, 2, \ldots\}$ put
\[\Omega_n = \left\{ \frac{l}{a_0a_1 \cdots a_{n-1}} : l \in \mathbb{Z} \text{ and } \left| \frac{l}{a_0a_1 \cdots a_{n-1}} \right| \leq \beta_n^{-1} \right\} \]
(here we are identifying the character group of Σ_a with a subgroup of the group \mathbb{Q} of rational numbers). Then there is a constant K such that
\[E_{\Omega_n}(p; f) \leq K \omega(p; f; \sigma_B((-\beta_n, \beta_n) \times \Lambda_n)) \]
for every $f \in L^p(\Sigma_a)$ if $p \in [1, \infty)$, or for every continuous f if $p = \infty$.

It follows that if $f \in \text{Lip}_p \alpha$ for some $\alpha > 0$ then
\[E_{\Omega_n}(p; f) = O(\beta_n^\alpha). \]
Combining (4) with Theorem 1, and observing that
\[\sigma_n = (\sigma_{\mathbb{Z}}((-\beta_n, \beta_n) \times \Lambda_n), \Lambda_n) + \Lambda(B_n, \Lambda_n). \]
then, under the further assumption that $\beta_{n+1} = \mu \beta_n$ for $n = 1, 2, \ldots$, we have for the \mathbb{a}-adic solenoid:

Theorem 5. Let $\alpha \in (0, 1)$ be given. Then $f \in \text{Lip}_p \alpha$ if and only if $E_{\Omega_n}(p; f) = O(\beta_n^\alpha)$ where, for $p = \infty$, f is taken to be continuous.

Obtaining an analogous result for finite dimensional groups is a little more involved. First we see from \cite[Lemma 1]{5} that a finite dimensional compact metric abelian group is topologically isomorphic with $(\Delta_a^\infty \times \Sigma_a^\text{dim} G)/H$, where \mathbb{a} is chosen so that \mathbb{Q} is the character group of Σ_a, Δ_a^∞ is the direct product of countably many copies of Δ_a, $\dim G$ is the (finite) topological dimension of G, and H is a closed 0-dimensional subgroup of $\Delta_a^\infty \times \Sigma_a^\text{dim} G$. Note that $\Delta_a^\infty \times \Sigma_a^\text{dim} G$ is compact, and hence so is H.

Now write
\[U_n = \mathbb{W}_n \times (\sigma_B((-\beta_n, \beta_n) \times \Lambda_n))^{\text{dim} G}, \]
and
\[V_n = \pi_H(U_n). \]
Let \mathbb{W}_n (respectively \mathbb{V}_n) be the open subgroup of $\Delta_a^\infty \times \Sigma_a^\text{dim} G$ (respectively $(\Delta_a^\infty \times \Sigma_a^\text{dim} G)/H$) generated by U_n (respectively V_n) (note that $\mathbb{W}_n = \mathbb{W}_n \times \Sigma_a^\text{dim} G$) and set
\[\nabla_n = \sigma_n^{-1}(V_n \cap (A(\Gamma_a, \mathbb{W}_n), [\mathbb{W}_n]^\text{dim} G) \cap A(\Gamma_a, \mathbb{W}_n \cap H)) + \]\nhere we use the notation that for an open subgroup \mathbb{W} and a closed subgroup H of an LCA group G, $\sigma_\mathbb{W}$ denotes the restriction map of Γ_G onto $\Gamma_\mathbb{W}$, and ν denotes the adjoint of the natural topological isomorphism
\[\nu : \pi_H(\mathbb{W}) \to \mathbb{W}/(\mathbb{W} \cap H). \]
With these definitions we have, from [3, Theorems 1–3], the existence of a constant K such that

$$E_{\nabla_n}(p; f) \leq K\omega(p; f; V_n)$$

for every $f \in L^p(\Delta^\infty_n \times \Sigma_n^{\dim G})/H)$ if $p \in [1, \infty)$, or for every continuous f if $p = \infty$.

To match this result with Theorem 1 we require that

$$\nabla_n = (A(\Gamma^\infty_n, \mathcal{W}_n), [\Omega_n]^\dim G) \cap A(\Gamma^\infty_n \times \Sigma_n^{\dim G}, H))^+.$$

As part of the proof of (6) we appeal to the following general result:

Lemma. Let G be an LCA group, with a closed subgroup H and an open subgroup \mathcal{U}. Then, for any $T \subset \Gamma_G$,

$$\sigma_{\mathcal{U}H}(\mathcal{U}H)((\mathcal{U}H) \cap A(\Gamma_G, H))^+ \subset \nu^-(\sigma_{\mathcal{U}H}(\mathcal{U}H) \cap A(\Gamma_G, \mathcal{U}H))^+).$$

Proof. First notice that both sides of the above inclusion are subsets of $\Gamma_{\mathcal{U}H}(\mathcal{U}H)$; just use [4, (24.5)] and the property that $\sigma_{\mathcal{U}H}(\mathcal{U}H)$ is an open subgroup of G/H.

Let $\chi \in \mathcal{T} \cap A(\Gamma_G, H)$ and $x \in \mathcal{U}$. Then

$$\sigma_{\mathcal{U}H}(\mathcal{U}H)(\mathcal{T} \cap A(\Gamma_G, H))^+(x + H) = \chi^+(x + H) = \chi(x).$$

Also $\sigma_{\mathcal{U}H}(\mathcal{T} \cap A(\Gamma_G, H))$ and (recall that $x \in \mathcal{U}$)

$$\nu^-(\sigma_{\mathcal{U}H}(\mathcal{T} \cap A(\Gamma_G, H))^+(x + H) = \sigma_{\mathcal{U}H}(\mathcal{T} \cap A(\Gamma_G, H))^+(x + \mathcal{U}) = \sigma_{\mathcal{U}H}(\mathcal{T} \cap A(\Gamma_G, H))^+(x) = \chi(x),$$

so that $\sigma_{\mathcal{U}H}(\mathcal{T} \cap A(\Gamma_G, H))^+(x) = \nu^-(\sigma_{\mathcal{U}H}(\mathcal{T} \cap A(\Gamma_G, H))^+)$. □

Unfortunately the inclusion reverse to that in (7) does not seem to hold in general. However we can establish (the special case) (6) quite easily as follows; consider $\eta \in \nabla_n$ and write $\eta = \eta^+$, where $\gamma \in A(\Gamma^\infty_n \times \Sigma_n^{\dim G}, H)$. We know that $\gamma = \{\gamma_0, \gamma_1, \ldots, \gamma_d\}$ for some $\gamma_0 \in \Gamma^\infty_n$ and $\gamma_1, \ldots, \gamma_d \in \Sigma_n$ ($d = \dim G$). Since $\sigma_{\mathcal{U}H}(\mathcal{T} \cap A(\Gamma_G, H))^+(\eta)$ can be identified with an element of

$$\sigma_{\mathcal{U}H}(\mathcal{T} \cap A(\Gamma_G, H))^+(\eta) = [(0), [\Omega_n]^\dim G),$$

it is apparent that $\gamma_0 \in A(\Gamma^\infty_n, \mathcal{W}_n)$ and $\gamma_1, \ldots, \gamma_d \in \Omega_n$, that is

$$\gamma \in A(\Gamma^\infty_n, \mathcal{W}_n), [\Omega_n]^\dim G];$$

this gives the required result.

Now that we know that (6) holds we can appeal to (5) and Theorems 1, 2, and 3 (the metric on Δ^∞_n is chosen with respect to the basis (\mathcal{W}_n)) to obtain, once more under the assumption that $\beta_n+1 = \mu\beta_n$ for $n = 1, 2, \ldots$:

Theorem 6. Let G be a finite dimensional compact metric abelian group. With the notation above we have that for $\alpha \in (0, 1)$ given, $f \in \text{Lip}_p\alpha$ if and only if $E_{\nabla_n}(p; f) = O(\beta_n^\alpha)$ where, for $p = \infty$, f is taken to be continuous.
REFERENCES

SCHOOL OF MATHEMATICAL AND PHYSICAL SCIENCES, MURDOCH UNIVERSITY, MURDOCH, WESTERN AUSTRALIA, 6153, AUSTRALIA