Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Composition operators induced by rational functions


Author: R. K. Singh
Journal: Proc. Amer. Math. Soc. 59 (1976), 329-333
MSC: Primary 47B37
DOI: https://doi.org/10.1090/S0002-9939-1976-0417847-4
MathSciNet review: 0417847
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A necessary and sufficient condition for a rational function to define a composition operator on $ {L^p}(\mu )$ is given in this paper, where $ \mu $ is the Lebesgue measure on the Borel subsets of the real line. In particular, all polynomials inducing composition operators are completely determined.


References [Enhancements On Off] (What's this?)

  • [1] P. R. Halmos, Measure theory, Van Nostrand, Princeton, N. J., 1950. MR 11, 504. MR 0033869 (11:504d)
  • [2] W. C. Ridge, Spectrum of a composition operator, Proc. Amer. Math. Soc. 37 (1973), 121-127. MR 46 #5583. MR 0306457 (46:5583)
  • [3] -, Characterization of abstract composition operators, Proc. Amer. Math. Soc. 45 (1974), 393-396. MR 49 #11310. MR 0346585 (49:11310)
  • [4] R. K. Singh, Compact and quasinormal composition operators, Proc. Amer. Math. Soc. 45 (1974), 80-82. MR 50 #1043. MR 0348545 (50:1043)
  • [5] -, Normal and Hermitian composition operators, Proc. Amer. Math. Soc. 47 (1975), 348-350. MR 0355679 (50:8153)
  • [6] -, Invertible composition operators on $ {L^2}(\lambda )$, Proc. Amer. Math. Soc. 56 (1976), 127-129. MR 0399938 (53:3776)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47B37

Retrieve articles in all journals with MSC: 47B37


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1976-0417847-4
Keywords: Rational functions, composition operators, polynomials, derivative
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society