Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Projective modules


Author: S. Jøndrup
Journal: Proc. Amer. Math. Soc. 59 (1976), 217-221
MSC: Primary 16A50
DOI: https://doi.org/10.1090/S0002-9939-1976-0419525-4
MathSciNet review: 0419525
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this note we prove that if $ R$ is a ring satisfying a polynomial identity and $ P$ is a projective left $ R$-module such that $ P$ is finitely generated modulo the Jacobson radical, then $ P$ is finitely generated. As a corollary we get that if $ R$ is a ring still satisfying a polynomial identity and $ M$ is a finitely generated flat $ R$-module such that $ M/JM$ is $ R/J$-projective, then $ M$ is $ R$-projective, $ J$ denotes the Jacobson radical.


References [Enhancements On Off] (What's this?)

  • [1] H. Bass, Finitistic dimension and a homological generalization of semi-primary rings, Trans. Amer. Math. Soc. 95 (1960), 466-488. MR 28 #1212. MR 0157984 (28:1212)
  • [2] I. Beck, Projective and free modules, Math. Z. 129 (1972), 231-234. MR 47 #1868. MR 0313313 (47:1868)
  • [3] C. Faith, Algebra: Rings, modules and categories. I, Springer-Verlag, Berlin and New York, 1973. MR 0366960 (51:3206)
  • [4] C. U. Jensen, On homological dimensions of rings with countably generated ideals, Math. Scand. 18 (1966), 97-105. MR 34 #7611. MR 0207796 (34:7611)
  • [5] D. Lazard, Autour de la platitude, Bull. Soc. Math. France 97 (1969), 81-128; (Thèse, Sc. Math., Paris, 1968). MR 40 #7310. MR 0254100 (40:7310)
  • [6] -, Liberté des gros modules projectifs, J. Algebra 31 (1974), 437-451. MR 50 #2250. MR 0349757 (50:2250)
  • [7] F. L. Sandomierski, Nonsingular rings, Proc. Amer. Math. Soc. 19 (1968), 225-230. MR 36 #2648. MR 0219568 (36:2648)
  • [8] W. V. Vasconcelos, On finitely generated flat modules, Trans. Amer. Math. Soc. 138 (1969), 505-512. MR 39 #199. MR 0238839 (39:199)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 16A50

Retrieve articles in all journals with MSC: 16A50


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1976-0419525-4
Keywords: Flat and projective module, Nakayama lemma and P.I. ring
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society