Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

An application of theorems of Schur and Albert


Author: Thomas L. Markham
Journal: Proc. Amer. Math. Soc. 59 (1976), 205-210
MSC: Primary 15A48; Secondary 15A57
DOI: https://doi.org/10.1090/S0002-9939-1976-0432682-9
MathSciNet review: 0432682
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Suppose $ {\Pi _n}$ is the cone of $ n \times n$ positive semidefinite matrices, and $ \operatorname{int} ({\Pi _n})$ is the set of positive definite matrices. Theorems of Schur and Albert are applied to obtain some elements of $ {\Pi _n}$ and $ \operatorname{int} ({\Pi _n})$. Then an analogue of Albert's theorem is given for $ M$-matrices, and finally a generalization is given for matrices of class $ P$.


References [Enhancements On Off] (What's this?)

  • [1] Arthur E. Albert, Conditions for positive and nonnegative definiteness in terms of pseudoinverses, SIAM J. Appl. Math. 17 (1969), 434-440. MR 39 #6888. MR 0245582 (39:6888)
  • [2] David Carlson, Emilie Haynsworth and Thomas Markham, A generalization of the Schur complement by means of the Moore-Penrose inverse, SIAM J. Appl. Math. 26 (1974), 169-175. MR 0347843 (50:344)
  • [3] Douglas E. Crabtree, Applications of $ M$-matrices to non-negative matrices, Duke Math. J. 33 (1966), 197-208. MR 32 #4135. MR 0186677 (32:4135)
  • [4] D. E. Crabtree and E. V. Haynsworth, An identity for the Schur complement of a matrix, Proc. Amer. Math. Soc. 22 (1969), 364-366. MR 41 #234. MR 0255573 (41:234)
  • [5] Ky Fan, Note on $ M$-matrices, Quart. J. Math. Oxford Ser. (2) 11 (1960), 43-49. MR 22 #8024. MR 0117242 (22:8024)
  • [6] M. Fiedler and V. Pták, On matrices with non-positive off-diagonal elements and positive principal minors, Czechoslovak Math. J. 12 (87) (1962), 382-400. MR 26 #134. MR 0142565 (26:134)
  • [7] F. R. Gantmaher, The theory of matrices, Vol. 2, GITTL, Moscow, 1953; English transl., Chelsea, New York, 1959. MR 16, 438; 21 #6372c. MR 0065520 (16:438l)
  • [8] J. Schur, Bemerkungen zur Theorie der beschranten Bilinearformen mit unendlich vielen Veränderlichen, J. Reine Angew. Math. 140 (1911), 1-28.
  • [9] George P. H. Styan, Hadamard products and multivariate statistical analysis, Linear Algebra and Appl. 6 (1973), 217-240. MR 47 #6724. MR 0318177 (47:6724)
  • [10] L. J. Watford, Jr., The Schur complement of a generalized $ M$-matrix, Linear Algebra and Appl. 5 (1972), 247-255. MR 46 #9075. MR 0309972 (46:9075)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 15A48, 15A57

Retrieve articles in all journals with MSC: 15A48, 15A57


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1976-0432682-9
Keywords: Positive semidefinite, positive definite, Schur complement, $ M$-matrices, class $ P$
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society