ON THE COHOMOLOGY GROUPS OF A MANIFOLD WITH A NONINTEGRABLE SUBBUNDLE

HARUO KITAHARA AND SHINSUKE YOROZU

Abstract. We define the cohomology groups \(H^*(M, \mathfrak{g}^{\mathfrak{e}}) \) of a manifold \(M \) with a nonintegrable subbundle \(E \), and we give the condition for the existence of a bundle-like metric with respect to \(E \).

1. Introduction. N. Abe [1], J. L. Heitsch [3] and I. Vaisman [6] studied some cohomology groups of a manifold with a foliation ("integrable case"). In this note, we generalize their results to the nonintegrable case, that is, we define the cohomology groups \(H^*(M, \mathfrak{g}^{\mathfrak{e}}) \) of a manifold \(M \) with a nonintegrable subbundle \(E \). In the case that \(M \) is a riemannian manifold, by its cohomology groups, we give the condition for the existence of a bundle-like metric with respect to \(E \).

2. Preliminaries. We shall be in \(C^\infty \)-category. Let \(M \) be an \(n \)-dimensional paracompact manifold with tangent bundle \(TM \). Let \(E \) be a subbundle of \(TM \) with the constant fibre dimension \(n - p \) \((0 < p < n)\). We assume that \(E \) is not integrable. \(\Gamma(\cdot) \) denotes the functor associating to a bundle its vector space of sections, and \([\ , \]\) the bracket operator on \(\Gamma(TM) \). Let \(C(E) \) be the "Cauchy characteristic subbundle" of \(E \), i.e. the fibre \(C_x(E) \) over \(x \in M \) of \(C(E) \) consists of \(X_x \in E_x \) (= the fibre over \(x \) of \(E \)) such that \([X, Y]_x \in E_x \) for any \(Y_x \in E_x, X, Y \in \Gamma(E) \), and, for all \(x \in M \), \(\dim C_x(E) \) is assumed to be constant. Then \(C(E) \) is an integrable subbundle of \(E \) (naturally, of \(TM \)). We assume that the fibre dimension of \(C(E) \) is \(n - q \) \((0 < p < q < n)\). We set
\[
\begin{align*}
Q &= TM/E, \\
E' &= E/C(E),
\end{align*}
\]
and, by a suitable riemannian metric on \(TM \), we have isomorphisms
\[
\begin{align*}
\Gamma(TM) &= \Gamma(Q) \oplus \Gamma(E), \\
\Gamma(TM) &= \Gamma(TM/C(E)) \oplus \Gamma(C(E)), \\
\Gamma(TM) &= \Gamma(Q) \oplus \Gamma(E') \oplus \Gamma(C(E)).
\end{align*}
\]

3. \((s, t, u)\)-forms and cohomology groups \(H^*(M, \mathfrak{g}^{\mathfrak{e}}) \). Let \(A' \) be the space of all \(r \)-forms on \(M \) and \(d \) the exterior derivative.

Definition. An \(r \)-form \(\omega \in A' \) is a \((s, t, u)\)-form, if
(i) \(s + t + u = r \), and

\(\text{Received by the editors September 3, 1975 and, in revised form, December 8, 1975.} \)

Key words and phrases. Cohomology groups, Cauchy characteristic subbundle, sheaf, generalized Bott connection, bundle-like metric with respect to \(E \).

© American Mathematical Society 1976

201
(ii) $\omega(X_1, \ldots, X_r) = 0$ except for s arguments X_1's in $\Gamma(Q)$, t arguments X_1's in $\Gamma(E)$ and u arguments X_1's in $\Gamma(C(E))$.

Let $A^{s,t,u}$ be the space of all (s, t, u)-forms on M, and we have a decomposition

$$A^r = \sum_{s + t + u = r} A^{s,t,u}.$$

By the definition of $C(E)$, we have

$$(3) \quad [\Gamma(C(E)), \Gamma(E)] \subset \Gamma(E), \quad [\Gamma(C(E)), \Gamma(C(E))] \subset \Gamma(C(E)).$$

From this, we have that the partial derivative

$$\hat{\partial}: A^{s,t,u} \to A^{s,t,u+1}$$

induced by the exterior derivative satisfies $(\hat{\partial})^2 = 0$. Let $\mathcal{A}^{s,t,u}$ be the sheaf of germs of (s, t, u)-forms. Then each $\mathcal{A}^{s,t,u}$ is a fine sheaf. Let $\mathcal{A}^{s,t}$ be the sheaf defined by $\mathcal{A}^{s,t} = \mathcal{A}^{s,t,0} \cap \ker(\hat{\partial})$.

Remark. $\mathcal{A}^{0,0}$ denotes the sheaf of germs of functions which are constants on the leaves of $C(E)$.

Theorem 1. There exists a fine resolution of the sheaf

$$\varphi_{s,t,u}: 0 \to \mathcal{A}^{s,t,0} \to \mathcal{A}^{s,t,1} \to \mathcal{A}^{s,t,2} \to \cdots,$$

where i denotes the natural inclusion.

Proof. Since we can obtain the Poincaré lemma for the operator $\hat{\partial}$ and the (s, t, u)-form on the open unit ball in euclidean n-space (cf. [6]), we easily prove the assertion of the theorem.

Let $H^u(M, \mathcal{A}^{s,t})$ be the cohomology groups of M with coefficients in the sheaf $\mathcal{A}^{s,t}$. Then we have

Theorem 2. There exist isomorphisms

$$H^0(M, \mathcal{A}^{s,t}) \cong A^{s,t,0} \cap \ker(\hat{\partial}),$$

$$H^u(M, \mathcal{A}^{s,t}) \cong A^{s,t,u} \cap \ker(\hat{\partial})/\hat{\partial}A^{s,t,u-1} \quad \text{for } u > 1.$$

Corollary 3. $H^u(M, \mathcal{A}^{s,t}) = \{0\}$ for $s > p$ or $t > q - p$ or $u > n - q$.

4. Generalized Bott connection and cohomology groups $H^u(M, \mathcal{A}^{s,t}(Q))$.

Let $\pi: TM \to Q = TM/E$ be the canonical projection. We define a map

$$\hat{\nabla}: \Gamma(C(E)) \times \Gamma(Q) \to \Gamma(Q)$$

by

$$\hat{\nabla}(X(S)) = \pi_*([X, \tilde{S}])$$

for $\forall X \in \Gamma(C(E)), \forall S \in \Gamma(Q)$ and $\tilde{S} \in \Gamma(TM)$ such that $\pi_*\tilde{S} = S$.

From (3), this is well defined. Let ∇' be any connection on Q. For $X \in \Gamma(TM)$, from (2), we can write $X = X_1 + X_2, \ X_1 \in \Gamma(C(E)), \ X_2 \in \Gamma(TM/C(E))$. Thus we define a map

$$\nabla: \Gamma(TM) \times \Gamma(Q) \to \Gamma(Q)$$
by

$$V_X(S) = \nabla_X(S) + \nabla_X'(S).$$

Then V is a connection on Q, and is called a generalized Bott connection (cf. [2], [4]).

Let $A^{s,t,u}(Q)$ be the space of all Q-valued (s, t, u)-forms on M and $\mathfrak{A}^{s,t,u}(Q)$ the corresponding sheaf. $\hat{\delta}$ operating on $A^{s,t,u}(Q)$ is given by ∇. Then, as above, we have a fine resolution of the sheaf $\mathfrak{A}^{s,t}(Q) = \mathfrak{A}^{s,t,0}(Q) \cap \ker(\hat{\delta})$. Thus we have

Theorem 4. There exist isomorphisms:

$$H^0(M, \mathfrak{A}^{s,t}(Q)) \cong A^{s,t,0}(Q) \cap \ker(\hat{\delta}),$$

$$H^u(M, \mathfrak{A}^{s,t}(Q)) \cong A^{s,t,u}(Q) \cap \ker(\hat{\delta})/\delta A^{s,t,u-1}(Q) \quad \text{for } u \geq 1.$$

Remark. If E is integrable, the same results are given by J. L. Heitsch [3].

5. **Bundle-like metric with respect to E.** Let M be an n-dimensional riemannian manifold with the metric g, and E^\perp the orthogonal complement of E in TM. Let $\hat{\nabla}: \Gamma(C(E)) \times \Gamma(E^\perp) \rightarrow \Gamma(E^\perp)$ be a map defined by $\hat{\nabla}_X(S) = \pi_a([X, S])$ ($\pi: TM \rightarrow E^\perp$ the canonical projection), we define a connection ∇ on E^\perp as in (5).

Definition. The riemannian metric g is a bundle-like metric with respect to E, if $(\nabla_X g)(S_1, S_2) = 0$ for $\forall X \in \Gamma(C(E)), \forall S_1, \forall S_2 \in \Gamma(E^\perp)$.

In the following, we assume that the fibre dimension of E is $n - 1$. Let $\{e_A\}$ be an orthonormal frame such that $e_1 \in \Gamma(E^\perp)$ and $e_a \in \Gamma(E)$, and $\{\omega^A\}$ its dual ($1 < A < n, 2 < a < n$). We assume that ω^1 is a global form (if necessary, we assume that E is transversally orientable).

Lemma 5. g is a bundle-like metric with respect to E if and only if $\nabla_X(e_1) = 0$ for $\forall X \in \Gamma(C(E))$.

Proof. For $\forall S_1 = \xi \cdot e_1, \forall S_2 = \eta \cdot e_1 \in \Gamma(E^\perp)$ (ξ, η: functions),

$$(\nabla_X g)(S_1, S_2) = X(\nabla_X g(S_1, S_2)) - g(\nabla_X(S_1), S_2) - g(S_1, \nabla_X(S_2))$$

$$= X(\xi \cdot e_1) - \eta \cdot X(\xi) - (\xi \cdot \eta) g(\nabla_X(e_1), e_1)$$

$$= X(\xi \cdot \eta) - (\xi \cdot \eta) g(e_1, \nabla_X(e_1))$$

$$= -2(\xi \cdot \eta) g(e_1, \nabla_X(e_1)).$$

Thus we have the assertion of the lemma.

By the above metric g, we have an isomorphism $\Gamma(Q) \cong \Gamma(E^\perp)$, and we can identify the connections ∇ on Q and on E^\perp.

Lemma 6. $\hat{\delta}_1 = 0$ if and only if $\nabla_X(e_1) = 0$ for $\forall X \in \Gamma(C(E))$.

Proof. For $\forall S = \xi \cdot e_1$ (ξ: function),
\[\hat{\omega}^1(S, X) = -X(\omega^1(S)) - \omega^1([S, X]) = -X(\xi) + \omega^1(\nabla_X(S)) \]
\[= -X(\xi) + X(\xi) + \xi \cdot \omega^1(\nabla_X(e_1)) \]
\[= \xi \cdot \omega^1(\nabla_X(e_1)). \]

Thus we have the assertion of the lemma.

From the above lemmas, we have

Theorem 7. Let \(M \) be an \(n \)-dimensional riemannian manifold with the metric \(g \) and \(E \) a nonintegrable, transversally orientable subbundle of \(TM \) of fibre dimension \(n - 1 \). If \(H^0(M, \mathcal{D}^{1,0}) \cong A^{1,0} \), then \(g \) is a bundle-like metric with respect to \(E \). Conversely, if \(g \) is a bundle-like metric with respect to \(E \), then \(H^0(M, \mathcal{D}^{1,0}) \neq \{0\} \).

Proof. A nonzero 1-form \(\omega^1 \) is a \((1, 0, 0)\)-form on \(M \). If \(H^0(M, \mathcal{D}^{1,0}) \cong A^{1,0} \), then \(A^{4,0} \cap \ker(\hat{\omega}^1) \) and we have \(\hat{\omega}^1 = 0 \). By Lemmas 5 and 6, \(g \) is a bundle-like metric with respect to \(E \). Conversely, if \(g \) is a bundle-like metric with respect to \(E \), by Lemmas 5 and 6, we have \(\hat{\omega}^1 = 0 \) and \(\omega^1 \) is a nonzero \((1, 0, 0)\)-form on \(M \). Thus we have \(H^0(M, \mathcal{D}^{1,0}) \neq \{0\} \).

Remark. In the case that \(E \) is integrable, \(M \) is compact and \(g \) is a bundle-like metric, then \(H^1(M, R) \neq \{0\} \) (cf. R. Sacksteder [5]).

References

Department of Mathematics, College of Liberal Arts, Kanazawa University, Kanazawa, Japan