Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The quadratic Putnam-Fuglede theorem


Author: John Daughtry
Journal: Proc. Amer. Math. Soc. 59 (1976), 404-405
MSC: Primary 47A15; Secondary 47B15
DOI: https://doi.org/10.1090/S0002-9939-1976-0470706-3
MathSciNet review: 0470706
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We give a new sufficient condition for an invariant subspace for a normal operator to be reducing. This result constitutes a generalization of the Putnam-Fuglede Theorem to quadratic operator equations.


References [Enhancements On Off] (What's this?)

  • [1] H. Radjavi and P. Rosenthal, Invariant subspaces, Ergebnisse math. Grenzgebiete, Band 77, Springer-Verlag, Berlin and New York, 1973. MR 0367682 (51:3924)
  • [2] M. Rosenblum, On a theorem of Fuglede and Putnam, J. London Math. Soc. 33 (1958), 376-377. MR 20 #6037. MR 0099598 (20:6037)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47A15, 47B15

Retrieve articles in all journals with MSC: 47A15, 47B15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1976-0470706-3
Keywords: Normal operator, Putnam-Fuglede Theorem, quadratic operator equation, invariant subspaces
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society