A REDUCIBILITY CONDITION FOR RECURSIVENESS

PAUL H. MORRIS

Abstract. A result due to Jockusch, equating recursiveness of a set to a reducibility condition on its jump, is sharpened.

Introduction. Unexplained notation is taken from Rogers [5]. In an unpublished proof in 1970, Carl Jockusch showed that if $A' \leq_{btt} \emptyset'$ then A is recursive (the converse is immediate). A short proof of an indirect nature was later obtained by Gordon Phillips, a student of Jockusch. This paper gives a fairly direct proof of a more basic result from which that of Jockusch follows immediately.

We write $A \oplus B$ for the set $\{2x: x \in A\} \cup \{2x + 1: x \in B\}$. Following Soare [6] set $H_A = \{e: We \cap A \neq \emptyset\}$. In the context of A co-r.e. Soare has called H_A the "weak jump" of A. For general A it seems appropriate to give this name to $H_A \oplus H_A$ (if A is co-r.e. and nonempty then $H_A = H_A \oplus H_A$). The relationship of the weak jump and S-reducibility [2] is analogous to that of the jump and Turing reducibility. H_A has been studied by Hay [3], [4] and Soare [6], [7] and has been involved in a number of interesting relationships.

Let t be the tt-condition $\langle \langle x_1, \ldots, x_n \rangle, \alpha \rangle$ (see [5, p. 110]). We denote the associated set $\{x_1, \ldots, x_n\}$ by F_t. If $\alpha(0, \ldots, 0) = 0$ we say t is zero-preserving.

Results.

Theorem 1. If A is r.e. and $H_A \leq_{btt} \emptyset'$ then A is recursive.

Proof. Let n be the least integer such that $H_A \leq_{btt} \emptyset'$ with norm bounded by n. Let h be a recursive function such that $e \in H_A \iff$ the tt-condition $h(e)$ is satisfied by \emptyset', and each $h(e)$ has norm bounded by n. Assume A nonrecursive. Define

$$W_{f(e,x)} = \begin{cases} W_e & \text{if } x \in \emptyset', \\ \emptyset & \text{otherwise.} \end{cases}$$

Note that if $x \in \emptyset'$ then $f(e,x) \in H_A \iff e \in H_A$. Define $W_{g(e,y)} = W_e \cup \{y\}$. If $y \in A$ then $g(e,y) \in H_A \iff e \in H_A$. Fix e. Set
A REDUCIBILITY CONDITION FOR RECURSIVENESS

\[B_1 = \{ f(e,x) : x \in \emptyset' \text{ and } F_{h(f(e,x))} \cap \emptyset' \neq \emptyset \}, \]

\[B_2 = \{ g(e,y) : y \in A \text{ and } F_{h(g(e,y))} \cap \emptyset' \neq \emptyset \}. \]

Note that \(B_1 \) and \(B_2 \) are r.e. Put \(B = B_1 \cup B_2 \). We will show that \(B \) is nonempty.

Observe that for any \(u \), if \(F_{h(u)} \cap \emptyset' = \emptyset \), then \(u \in H_A \Leftrightarrow h(u) \) is not zero-preserving. We distinguish two cases:

\textit{Case 1.} \(e \in H_A \). Then \(x \in \emptyset' \Leftrightarrow f(e,x) \in H_A \). Thus if \(F_{h(f(e,x))} \cap \emptyset' = \emptyset \), we have \(x \in \emptyset' \Leftrightarrow h(f(e,x)) \) is zero-preserving.

Suppose \(B_1 = \emptyset \). Then \(F_{h(f(e,x))} \cap \emptyset' \neq \emptyset \Rightarrow x \in \emptyset' \). Putting these together we get \(x \in \emptyset' \Leftrightarrow F_{h(f(e,x))} \cap \emptyset' \neq \emptyset \) or \(h(f(e,x)) \) is zero-preserving. This implies \(\emptyset' \) is r.e., a falsehood. Thus \(B_1 \neq \emptyset \).

\textit{Case 2.} \(e \notin H_A \). In this case \(y \in A \Leftrightarrow g(e,y) \in H_A \). Consequently if \(F_{h(g(e,y))} \cap \emptyset' = \emptyset \), we have \(y \in A \Leftrightarrow h(g(e,y)) \) is not zero-preserving. Assuming \(B_2 = \emptyset \) now gives \(y \in A \Leftrightarrow F_{h(g(e,y))} \cap \emptyset' \neq \emptyset \) or \(h(g(e,y)) \) is zero-preserving. It follows that \(A \) is recursive, contrary to supposition. Here we conclude \(B_2 \neq \emptyset \).

Now let \(z \) be the first element in an enumeration of \(B \). Since \(F_{h(z)} \cap \emptyset' \neq \emptyset \), we can form a tt-condition \(t \) with norm bounded by \(n - 1 \) such that \(t \) is satisfied by \(\emptyset' \Leftrightarrow h(z) \) is satisfied by \(\emptyset' \Leftrightarrow e \in H_A \).

Redefining \(h(e) = t \) we see that \(H_A \leq_{btt} \emptyset' \) with norm bounded by \(n - 1 \), contradicting the minimality of \(n \). We conclude that \(A \) is recursive. Q.E.D.

Note that the above proof does not supply a decision procedure for \(A \). Theorem 1 confirms a conjecture of Hay [3].

Theorem 1. If \(H_A \oplus H_{\overline{A}} \leq_{btt} \emptyset' \), then \(A \) is recursive.

Proof. If \(H_A \oplus H_{\overline{A}} \leq_{btt} \emptyset' \), then \(A \leq_{btt} \emptyset' \).

By [5, Theorem 14-IX] \(A \) is a Boolean combination of r.e. sets. It follows from Ershov [1] that there are r.e. sets \(R_1, \ldots, R_n \) such that \(R_1 \subseteq \cdots \subseteq R_n \) and

\[A = \begin{cases} \bigcup_{i=1}^{n/2} (R_{2i} - R_{2i-1}) & \text{if } n \text{ is even,} \\ R_1 \cup \bigcup_{i=1}^{(n-1)/2} (R_{2i+1} - R_{2i}) & \text{if } n \text{ is odd.} \end{cases} \]

We will prove the theorem by induction on \(n \). For \(n = 1 \) the result follows from Theorem 1. Suppose \(n > 1 \). Let \(f \) enumerate \(R_n \). Let \(B = f^{-1}(\overline{A}) \). Then \(B \leq_m A \). Hence \(H_B \leq_{btt} H_{\overline{A}} \) and \(H_B \leq_{btt} H_A \) and so \(H_B \oplus H_B \leq_{btt} \emptyset' \).

Let \(S_i = f^{-1}(R_i), 1 \leq i \leq n - 1 \). Then

\[B = \begin{cases} \bigcup_{i=1}^{(n-1)/2} (S_{2i} - S_{2i-1}) & \text{if } n - 1 \text{ is even,} \\ S_1 \cup \bigcup_{i=1}^{(n-2)/2} (S_{2i+1} - S_{2i}) & \text{if } n - 1 \text{ is odd.} \end{cases} \]

The inductive hypothesis now yields \(B \) is recursive. It follows that \(A \) is r.e. By Theorem 1, \(A \) is recursive. Q.E.D.
Corollary (Jockusch). If $A' \leq_{\text{bit}} \emptyset'$ then A is recursive.

Proof. Clearly $H_A \leq_1 A'$ and $H_A \leq_1 A'$. The result follows.

Closing remarks. In view of Theorem 2, it might be supposed that $H_A \leq_{\text{bit}} \emptyset' \leftrightarrow A \text{ r.e.}$ This is false, as is demonstrated by an elaborate construction in [3].

The author is grateful to Louise Hay and the referee for comments which have improved the presentation of these results.

References

Department of Computer Science, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1

Current address: 2901 Hillegass #2, Berkeley, California 94705