Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Injective cogenerator rings and a theorem of Tachikawa


Author: Carl Faith
Journal: Proc. Amer. Math. Soc. 60 (1976), 25-30
MSC: Primary 16A36
DOI: https://doi.org/10.1090/S0002-9939-1976-0417237-4
MathSciNet review: 0417237
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Tachikawa showed that a left perfect ring R is an injective cogenerator in the category of all right R-modules iff there holds: (right FPF) every finitely generated faithful right module generates $ \bmod {\text{-}}R$. In this paper, we simplify Tachikawa's long and difficult proof by first obtaining some new structure theorems for a general semiperfect right FPF ring R; the most important are: R is a direct sum of uniform right ideals, and every nonzero right ideal of the basic ring $ {R_0}$ of R contains a nonzero ideal of $ {R_0}$. Furthermore, if the Jacobson radical rad R is nil, then R is right self-injective. Tachikawa's theorem is an immediate consequence. We also generalize a theorem of Osofsky on perfect PF rings to FPF rings.


References [Enhancements On Off] (What's this?)

  • [66] G. Azumaya, Completely faithful modules and self-injective rings, Nagoya Math. J. 27 (1966), 697-708. MR 35 #4253. MR 0213389 (35:4253)
  • [60] H. Bass, Finistic dimension and a homological generalization of semi-primary rings, Trans. Amer. Math. Soc. 95 (1960), 466-488. MR 28 #1212. MR 0157984 (28:1212)
  • [68] -, Algebraic K-theory, Benjamin, New York, 1968. MR 40 #2736. MR 0249491 (40:2736)
  • [67] C. Faith and E. A. Walker, Direct-sum representations of injective modules, J. Algebra 5 (1967), 203-221. MR 34 #7575. MR 0207760 (34:7575)
  • [73] C. Faith, Algebra: Rings, modules and categories. I, Springer-Verlag, Berlin and New York, 1973. MR 0366960 (51:3206)
  • [76a] -, Algebra II: Ring theory, Springer-Verlag, Berlin and New York, 1976. MR 0427349 (55:383)
  • [76b] -, Characterizations of rings by faithful modules, Lecture Notes, Math. Dept., Technion, Haifa, Israel.
  • [58] E. Matlis, Injective modules over Noetherian rings, Pacific J. Math. 8 (1958), 511-528. MR 20 #5800. MR 0099360 (20:5800)
  • [58] K. Morita, Duality for modules and its applications to the theory of rings with minimum condition, Sci. Rep. Tokyo Kyoiku Diagaku Sect A 6 (1958), 83-142. MR 20 #3183. MR 0096700 (20:3183)
  • [67] T. Kato, Self-injective rings, Tôkoku Math. J. (2) 19 (1967), 485-495. MR 37 #247. MR 0224648 (37:247)
  • [68] -, Some generalizations of QF-rings, Proc. Japan Acad. 44 (1968), 114-119. MR 38 #183. MR 0231855 (38:183)
  • [68] T. Onodera, Über Kogeneratoren, Arch. Math. (Basel) 19 (1968), 402-410. MR 38 #2170. MR 0233849 (38:2170)
  • [66] B. L. Osofsky, A generalization of quasi-Frobenius rings, J. Algebra 4 (1966), 373-387. MR 34 #4305; erratum, 36 #6443. MR 0204463 (34:4305)
  • [69] H. Tachikawa, A generalization of quasi-Frobenius rings, Proc. Amer. Math. Soc. 20 (1969), 471-476. MR 38 #5849. MR 0237568 (38:5849)
  • [56] Y. Utumi, On quotient rings, Osaka Math. J. 8 (1956), 1-18. MR 18, 7. MR 0078966 (18:7c)
  • [67] -, Self-injective rings, J. Algebra 6 (1967), 56-64. MR 35 #219. MR 0209321 (35:219)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 16A36

Retrieve articles in all journals with MSC: 16A36


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1976-0417237-4
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society