Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Piecewise linear functions with almost all points eventually periodic

Author: Melvyn B. Nathanson
Journal: Proc. Amer. Math. Soc. 60 (1976), 75-81
MSC: Primary 26A18
MathSciNet review: 0417351
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ f:[0,1] \to [0,1]$ be continuous, and let $ {f^p}$ denote the pth iterate of /. Li and Yorke [2] proved that if there is a point $ x \in [0,1]$ such that $ {f^3}(x) = x$ but $ f(x) \ne x$, then f is chaotic in the sense that f has periodic points of arbitrarily large period, and uncountably many points which are not even asymptotically periodic. But this chaos can be measure theoretically trivial. For each $ p \geqslant 3$ we construct a continuous, piecewise linear function $ f:[0,1] \to [0,1]$ such that f is chaotic, but almost every point of $ [0,1]$ has eventual period p. The condition ``eventual period p'' cannot be replaced by ``period p". We prove that if $ {f^p}(x) = x$ for almost all $ x \in [0,1]$, then $ {f^2}(x) = x$ for all $ x \in [0,1]$. Moreover, we describe a normal form for all such ``square roots of the identity."

References [Enhancements On Off] (What's this?)

  • [1] J. Guckenheimer, G. F. Oster and A. Ipaktchi, The dynamics of density dependent population models (preprint).
  • [2] T.-Y. Li and J. A. Yorke, Period three implies chaos, Amer. Math. Monthly 82 (1975), 985-992. MR 0385028 (52:5898)
  • [3] R. M. May, Biological populations with nonoverlapping generations: stable points, stable cycles, and chaos, Science 186 (1974), 645-647.
  • [4] R. M. May and G. F. Oster, Bifurcations and dynamic complexity in simple ecological models, Amer. Natur. 110 (1976), 573-599.
  • [5] N. Metropolis, M. L. Stein and P. R. Stein, Stable states of a non-linear transformation, Numer. Math. 10 (1967), 1-19. MR 37 #7068. MR 0231515 (37:7068)
  • [6] -, On finite limit sets for transformations on the unit interval, J. Combinatorial Theory Ser. A 15 (1973), 25-44. MR 47 #5183. MR 0316636 (47:5183)
  • [7] M. B. Nathanson, Permutations, periodicity, and chaos, J. Combinatorial Theory Ser. A 21 (1976) (to appear). MR 0424573 (54:12532)
  • [8] P. R. Stein and S. M. Ulam, Non-linear transformation studies on electronic computers, Rozprawy Mat. 39 (1964), 1-66. MR 29 #6666. MR 0169416 (29:6666)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 26A18

Retrieve articles in all journals with MSC: 26A18

Additional Information

Keywords: Iterations, nonlinear functions, chaotic functions, dynamical systems
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society