Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Piecewise linear functions with almost all points eventually periodic


Author: Melvyn B. Nathanson
Journal: Proc. Amer. Math. Soc. 60 (1976), 75-81
MSC: Primary 26A18
MathSciNet review: 0417351
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ f:[0,1] \to [0,1]$ be continuous, and let $ {f^p}$ denote the pth iterate of /. Li and Yorke [2] proved that if there is a point $ x \in [0,1]$ such that $ {f^3}(x) = x$ but $ f(x) \ne x$, then f is chaotic in the sense that f has periodic points of arbitrarily large period, and uncountably many points which are not even asymptotically periodic. But this chaos can be measure theoretically trivial. For each $ p \geqslant 3$ we construct a continuous, piecewise linear function $ f:[0,1] \to [0,1]$ such that f is chaotic, but almost every point of $ [0,1]$ has eventual period p. The condition ``eventual period p'' cannot be replaced by ``period p". We prove that if $ {f^p}(x) = x$ for almost all $ x \in [0,1]$, then $ {f^2}(x) = x$ for all $ x \in [0,1]$. Moreover, we describe a normal form for all such ``square roots of the identity."


References [Enhancements On Off] (What's this?)

  • [1] J. Guckenheimer, G. F. Oster and A. Ipaktchi, The dynamics of density dependent population models (preprint).
  • [2] Tien Yien Li and James A. Yorke, Period three implies chaos, Amer. Math. Monthly 82 (1975), no. 10, 985–992. MR 0385028
  • [3] R. M. May, Biological populations with nonoverlapping generations: stable points, stable cycles, and chaos, Science 186 (1974), 645-647.
  • [4] R. M. May and G. F. Oster, Bifurcations and dynamic complexity in simple ecological models, Amer. Natur. 110 (1976), 573-599.
  • [5] N. Metropolis, M. L. Stein, and P. R. Stein, Stable states of a non-linear transformation, Numer. Math. 10 (1967), 1–19. MR 0231515
  • [6] N. Metropolis, M. L. Stein, and P. R. Stein, On finite limit sets for transformations on the unit interval, J. Combinatorial Theory Ser. A 15 (1973), 25–44. MR 0316636
  • [7] Melvyn B. Nathanson, Permutations, periodicity, and chaos, J. Combinatorial Theory Ser. A 22 (1977), no. 1, 61–68. MR 0424573
  • [8] P. R. Stein and S. M. Ulam, Non-linear transformation studies on electronic computers, Rozprawy Mat. 39 (1964), 66. MR 0169416

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 26A18

Retrieve articles in all journals with MSC: 26A18


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1976-0417351-3
Keywords: Iterations, nonlinear functions, chaotic functions, dynamical systems
Article copyright: © Copyright 1976 American Mathematical Society