Piecewise linear functions with almost all points eventually periodic

Author:
Melvyn B. Nathanson

Journal:
Proc. Amer. Math. Soc. **60** (1976), 75-81

MSC:
Primary 26A18

DOI:
https://doi.org/10.1090/S0002-9939-1976-0417351-3

MathSciNet review:
0417351

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be continuous, and let denote the *p*th iterate of */*. Li and Yorke [2] proved that if there is a point such that but , then *f* is chaotic in the sense that *f* has periodic points of arbitrarily large period, and uncountably many points which are not even asymptotically periodic. But this chaos can be measure theoretically trivial. For each we construct a continuous, piecewise linear function such that *f* is chaotic, but almost every point of has eventual period *p*. The condition ``eventual period *p*'' cannot be replaced by ``period *p*". We prove that if for almost all , then for all . Moreover, we describe a normal form for all such ``square roots of the identity."

**[1]**J. Guckenheimer, G. F. Oster and A. Ipaktchi,*The dynamics of density dependent population models*(preprint).**[2]**T.-Y. Li and J. A. Yorke,*Period three implies chaos*, Amer. Math. Monthly**82**(1975), 985-992. MR**0385028 (52:5898)****[3]**R. M. May,*Biological populations with nonoverlapping generations*:*stable points, stable cycles, and chaos*, Science**186**(1974), 645-647.**[4]**R. M. May and G. F. Oster,*Bifurcations and dynamic complexity in simple ecological models*, Amer. Natur.**110**(1976), 573-599.**[5]**N. Metropolis, M. L. Stein and P. R. Stein,*Stable states of a non-linear transformation*, Numer. Math.**10**(1967), 1-19. MR**37**#7068. MR**0231515 (37:7068)****[6]**-,*On finite limit sets for transformations on the unit interval*, J. Combinatorial Theory Ser. A**15**(1973), 25-44. MR**47**#5183. MR**0316636 (47:5183)****[7]**M. B. Nathanson,*Permutations, periodicity, and chaos*, J. Combinatorial Theory Ser. A**21**(1976) (to appear). MR**0424573 (54:12532)****[8]**P. R. Stein and S. M. Ulam,*Non-linear transformation studies on electronic computers*, Rozprawy Mat.**39**(1964), 1-66. MR**29**#6666. MR**0169416 (29:6666)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
26A18

Retrieve articles in all journals with MSC: 26A18

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1976-0417351-3

Keywords:
Iterations,
nonlinear functions,
chaotic functions,
dynamical systems

Article copyright:
© Copyright 1976
American Mathematical Society