Nonexistence of best alternating approximations on subsets

Author:
Charles B. Dunham

Journal:
Proc. Amer. Math. Soc. **60** (1976), 203-206

MSC:
Primary 41A50

MathSciNet review:
0417643

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The existence of best Chebyshev approximations by an alternating family on closed subsets of an interval is considered. In varisolvent approximation, existence on subsets of sufficiently low density is guaranteed if the best approximation on the interval is of maximum degree. The paper studies the case in which the best approximation is not of maximum degree and shows that in many common cases, no such guarantee is possible.

**[1]**Richard Barrar and Henry Loeb,*On 𝑁-parameter and unisolvent families*, J. Approximation Theory**1**(1968), 180–181. MR**0236578****[2]**Charles B. Dunham,*Chebyshev aproximation with respect to a weight function*, J. Approximation Theory**2**(1969), 223–232. MR**0252922****[3]**Charles B. Dunham,*Chebyshev approximation by 𝐴+𝐵*𝑙𝑜𝑔(1+𝐶𝑋). II*, J. Inst. Math. Appl.**10**(1972), 369–372. MR**0338632****[4]**C. B. Dunham,*Approximation by alternating families on subsets*, Computing (Arch. Elektron. Rechnen)**9**(1972), 261–265 (English, with German summary). MR**0312686****[5]**Charles B. Dunham,*Approximation by exponential-polynomial products on finite point sets*, J. Inst. Math. Appl.**10**(1972), 125–127. MR**0380200****[6]**Charles B. Dunham,*Alternating Chebyshev approximation*, Trans. Amer. Math. Soc.**178**(1973), 95–109. MR**0318736**, 10.1090/S0002-9947-1973-0318736-8**[7]**Charles B. Dunham,*Varisolvent Chebyshev approximation on subsets*, Approximation theory (Proc. Internat. Sympos., Univ. Texas, Austin, Tex., 1973) Academic Press, New York, 1973, pp. 337–340. MR**0333534****[8]**Charles B. Dunham,*Nonexistence of best rational approximations on subsets*, J. Approximation Theory**14**(1975), no. 2, 160–161. MR**0402353****[9]**Ch. B. Dunham,*Chebyshev approximation by logarithmic families*, Z. Angew. Math. Mech.**53**(1973), no. 6, 352–353. MR**0387902****[10]**John R. Rice,*The approximation of functions. Vol. 2: Nonlinear and multivariate theory*, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969. MR**0244675**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
41A50

Retrieve articles in all journals with MSC: 41A50

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1976-0417643-8

Article copyright:
© Copyright 1976
American Mathematical Society