A NOTE ON GREEN'S RELATIONS ON THE SEMIGROUP N_n

D. J. HARTFIEL, C. J. MAXSON AND R. J. PLEMMONS

Abstract. Solvability criteria for nonnegative matrix equations are applied in characterizing the first three of the four Green's relations $\mathcal{L}, \mathcal{R}, \mathcal{D}$ and \mathcal{J} on the semigroup N_n of all $n \times n$ nonnegative matrices. For the relation \mathcal{J}, it is shown that $\mathcal{D} = \mathcal{J}$ when the relation is restricted to the regular matrices in N_n although on the entire semigroup N_n, $n \geq 3$, $\mathcal{D} \neq \mathcal{J}$.

Introduction. In recent years, much research has been concerned with the development of the algebraic structure of the $n \times n$ nonnegative matrices. Topics investigated range from characterizing multiplicative groups [5] and semigroups [4], [11], [12], to initiating a theory of primes [1], [10]. A further topic which has received interest, in this regard, concerns the characterization of the Green's relations. In [6], the Green's relations on the semigroup Ω_n of the $n \times n$ doubly stochastic matrices were completely characterized. Similar characterizations were given in the semigroup Σ_n of $n \times n$ stochastic matrices. The study of the Green's relations on the semigroup N_n of $n \times n$ nonnegative matrices was begun in [7] and in [9]. The work herein is intended as a completion of that study.

As this work is a completion of previously published research, the paper will not contain a dictionary of its language. For this the reader is referred to [7].

The theory of Green's relations on N_n. To place the research in its proper framework, we will sketch the results of the theory up to the position held a priori this paper.

The work of [7] and [9] characterized the Green's relations on the set of regular elements in N_n. These characterizations are as follows.

Theorem 1. Let A and B be regular of rank r in N_n. Let P_1 and P_2 be permutation matrices such that $A_1 = AP_1$ and $B_1 = BP_2$ where A_1 and B_1 have the block form $[M \ U]$ where M is $n \times r$ and contains a monomial submatrix C of order r, i.e., $C = PD$ where D is a diagonal matrix with positive main diagonal and P a permutation matrix. Then $A \mathcal{R} B$ if and only if there exists a matrix $Q \in N_n$ of the form $Q = \begin{pmatrix} C & K \\ 0 & 0 \end{pmatrix}$ where C is $r \times r$ and monomial, such that $A_1 = B_1 Q$.

We note that $A \mathcal{E} B$ in N_n if and only if $A^T \mathcal{R} B^T$ in N_n. Thus, our results are stated for the relation \mathcal{R}, the study of \mathcal{E} being dual.

Received by the editors December 24, 1974.

Key words and phrases. Green's relations, matrix equations, nonnegative matrices, regularity.

Copyright © 1977, American Mathematical Society
Theorem 2. If A, B and N_n are regular then $A \circ B$ if and only if they have the same rank.

As a consequence of this theorem, the following corollary is obtained.

Corollary 1. If A, B in N_n are regular, then $A \circ B$ if and only if $A \mathrel{\triangleleft} B$.

Proof. Since $\mathrel{\triangleleft} \subseteq \mathrel{\preceq}$ in any semigroup, $A \circ B$ only if $A \mathrel{\triangleleft} B$. Conversely, if $A \mathrel{\triangleleft} B$ then the equations $A = X_1 BY_1$ and $B = X_2AY_2$ are solvable for X_1, Y_1, and X_2, Y_2 in N_n. Thus, A and B have the same rank and hence from Theorem 2, $A \circ B$.

From these theorems, it is seen that the tool used to characterize Green's relations for regular elements in N_n is that of rank. However, this tool is more of a vector space notion and as such is too sophisticated to characterize Green's relations on N_n. Here, a tool more concerned with positive cones, is necessitated. This work requires the following definitions.

Let $c(A)$ denote the cone generated by the columns of A. Define the cone dimension of $c(A)$, denoted $d(A)$, as the number of edges of $c(A)$. Further, as in [3], define a set T of column vectors in A to be independent if and only if each vector in T lies on an edge of $c(A)$ and no two vectors in T lie on the same edge of $c(A)$. A set of column vectors of A which is not independent is called dependent. Independent and dependent sets of row vectors in A are defined similarly.

For A, B in N_n, if A_i is a dependent column in A then $(BA)_i$ is a dependent column in BA. Hence $d(BA) \leq d(A)$. By utilizing this notion of cone dimension we now characterize the Green's relations on N_n. This characterization is founded on the following lemmas.

Lemma 1. Let A, B be in N_n.

(i) If $A \mathrel{\triangleleft} B$ then $d(A) = d(B)$.

(ii) If $A \mathrel{\circ} B$ then $d(A) = d(B)$ and $d(A^T) = d(B^T)$.

Proof. Note that (i) follows from the definition of \triangleleft. For (ii), suppose $A \mathrel{\circ} C$ and $C \mathrel{\prec} B$. Then $d(A) = d(C)$ from (i). Since $C \mathrel{\triangleleft} B$, $XC = B$ and $YA = C$ for some X, Y in N_n. But then, $d(B) \leq d(C)$ and $d(C) \leq d(B)$ and consequently $d(A) = d(B)$. Finally, as $A \mathrel{\circ} B$ if and only if $A^T \mathrel{\circ} B^T$, $d(A^T) = d(B^T)$.

Lemma 2. Let A be in N_n with $d(A) = c$. If A' is any $n \times c$ submatrix of independent columns of A then $A \mathrel{\circ} \begin{bmatrix} A' & 0 \end{bmatrix}$. If further, $d(A^T) = r$ and A'' is any $r \times c$ submatrix in r independent rows and c independent columns of A then

$$A \mathrel{\circ} \begin{pmatrix} A'' & 0 \\ 0 & 0 \end{pmatrix}.$$

Proof. Without loss of generality suppose the c independent columns are in columns $1, \ldots, c$, i.e., $A = \begin{bmatrix} A' & A_2 \end{bmatrix}$, where A' is $n \times c$. It is easily verified that $A \mathrel{\circ} \begin{bmatrix} A' & 0 \end{bmatrix}$. If further, $d(A^T) = r$, then again without loss of generality, we assume the independent columns are in columns $1, \ldots, r$. Hence

$$A = \begin{pmatrix} A'' & A_2 \\ A_3 & A_4 \end{pmatrix}.$$
where A'' is $r \times c$. As above,

$$A \oplus \begin{pmatrix} A'' & 0 \\ A_3 & 0 \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} A'' & 0 \\ A_3 & 0 \end{pmatrix} \ominus \begin{pmatrix} A'' & 0 \\ 0 & 0 \end{pmatrix}.$$

Hence

$$A \ominus \begin{pmatrix} A'' & 0 \\ 0 & 0 \end{pmatrix}.$$

Based on these results, our characterization of the Green’s relations \ominus, \ominus, and \ominus on N_n now follows.

Theorem 3. Let A, B be in N_n. The following statements are equivalent:

(a) $A \ominus B$,

(b) (i) $d(A) = d(B) = d$ and

(ii) given any $n \times d$ submatrix of independent columns of A, say A', and any $n \times d$ submatrix of independent columns of B, say B', then there is a $d \times d$ monomial matrix X so that $A'X = B'$.

Proof. Suppose $d(A) = d$. Let A' be any submatrix of d independent columns of A. Now $A \oplus [A' \ 0]$ by Lemma 2. Similarly, if B' is any submatrix of d independent columns of B, then $B \ominus [B' \ 0]$.

Now if $A \ominus B$, then $d(A) = d(B)$ by Lemma 1. Further, from the above remarks, $A' \ominus B'$, i.e. $A'X = B'$ and $B'Y = A'$ hold for some X and Y in N_d. Hence $A'(XY) = A'$ and so $XY = I$ from which it follows that X and Y are monomials. Thus, (b) is obtained.

Conversely, if (b) holds, $A' \ominus B'$. Thus $[A' \ 0] \ominus [B' \ 0]$ where $[A' \ 0]$ and $[B' \ 0]$ are in N_n. As $A \ominus [A' \ 0]$ and $B \ominus [B' \ 0]$, (a) follows.

Theorem 4. Let A, B be in N_n. The following statements are equivalent:

(a) $A \ominus B$,

(b) (i) $d(A) = d(B) = c$, $d(A^T) = d(B^T) = r$ and

(ii) given any $r \times c$ submatrix A' in A and any $r \times c$ submatrix B' in B lying in r independent rows and c independent columns of A and B, respectively, then there are monomial matrices X in N_r and Y in N_c such that $X A' Y = B'$.

Proof. The argument is similar to that in Theorem 3.

Having characterized the Green’s relations on N_n for \ominus, \ominus, and \ominus, our efforts are now turned toward \ominus. Our work rests on the following corollary to Theorem 4.

Corollary. Let A, B be in N_n and nonsingular. Then $A \ominus B$ if and only if $X A Y = B$ has monomial solutions X and Y in N_n.

Applying this corollary, we can now show that for $n \geq 3$, $\ominus \neq \ominus$ on N_n.

For this consider

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 4 & 1 \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 6 & 1 & 1 \end{pmatrix}.$$
Then, by direct calculation,
\[
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
\frac{1}{4} & 0 & \frac{1}{4}
\end{pmatrix}
\begin{pmatrix}
1 & 0 & 0 \\
2 & 1 & 0 \\
3 & 4 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 4
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & 0 \\
2 & 1 & 0 \\
6 & 1 & 1
\end{pmatrix}
\]
and
\[
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & \frac{1}{2}
\end{pmatrix}
\begin{pmatrix}
1 & 0 & 0 \\
2 & 1 & 0 \\
0 & 7 & 2
\end{pmatrix}
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
3 & 4 & 1
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & 0 \\
2 & 1 & 0 \\
3 & 4 & 1
\end{pmatrix}
\]
Hence \(A \not\preceq B \). But, as there are no monomials \(D_1 \) and \(D_2 \) so that \(D_1 AD_2 = B \), it follows that \(\not\preceq \not\preceq \not\preceq \) on \(N_3 \).

For \(n > 3 \), consider
\[
\begin{pmatrix}
A & 0 \\
0 & I_{n-3}
\end{pmatrix}
\quad \text{and} \quad
\begin{pmatrix}
B & 0 \\
0 & I_{n-3}
\end{pmatrix}
\]
From the above calculations, \(\not\preceq B \), yet \(A \preceq B \). Hence \(\not\preceq \not\preceq \not\preceq \) on \(N_n, n \geq 3 \).

For \(n = 2 \), the result differs. For this case we show \(\not\preceq = \not\preceq \). In this regard, suppose \(A \not\preceq B \).

Case 1. \(A \), and hence \(B \), is singular.

Singularity here implies \(A \) and \(B \) are regular elements in \(N_2 \) and so \(A \not\preceq B \).

Case 2. \(A \), and hence \(B \), is nonsingular.

By definition \(A \not\preceq B \) implies that \(X_1 \preceq Y_1 = B \) and \(X_2 \preceq Y_2 \preceq A \) for some nonsingular \(X_1, X_2, Y_1, \) and \(Y_2 \) in \(N_2 \). Thus, each of \(X_1, X_2, Y_1, \) and \(Y_2 \) has a positive diagonal. Let \(X \prec Y \) denote the property that \(x_{ij} \geq 0 \) implies \(y_{ij} > 0 \) for all \(i,j \). Then there exist permutation matrices \(P \) and \(Q \) so that \(PAQ < B \) and permutation matrices \(R \) and \(S \) so that \(RBS < A \). Thus, \(PAQ \) and \(B \) have the same 0 pattern. We again argue cases.

Case a. \(A \), and hence \(B \), has one or two zeros.

In this case, by solving equations, diagonal matrices \(D_1 \) and \(D_2 \) in \(N_2 \) may be found so that \(D_1 PAQD_2 = B \). Hence \(A \not\preceq B \).

Case b. \(A \), and hence \(B \), is positive.

In this case, as \(X_1 \preceq Y_1 = B \) and \(X_2 \preceq Y_2 \preceq A \) it follows that \((X_2X_1)A(Y_1Y_2) = A \). Set \(X = X_2X_1 \) and \(Y = Y_1Y_2, \) i.e. \(XAY = A \). As \((cX)A(c^{-1}Y) = A \) for any positive number \(c \), we may assume without loss of generality that \(\det X = \det Y = \pm 1 \). Suppose \(\det X = \det Y = 1 \), i.e. \(x_{11}x_{22} - x_{12}x_{21} = 1 \) and \(y_{11}y_{22} - y_{12}y_{21} = 1 \). Suppose
\[
\max \{x_{11}, x_{22}\} = x_{11} \geq 1 \quad \text{and} \quad \max \{y_{11}, y_{22}\} = y_{11} \geq 1.
\]
If either of these two inequalities is strict, the 1, 1 entry in \(XAY \) is strictly greater than \(a_{11} \), a contradiction. But now \(x_{11} = x_{22} = y_{11} = y_{22} = 1 \). Further \(x_{12} = x_{21} = y_{12} = y_{21} = 0 \) so that \(X = Y = I \). Considering all other possible cases leads to the conclusion that \(X \) and \(Y \) are monomials and so \(X_1, X_2, Y_1, \) and \(Y_2 \) are monomials, hence \(A \not\preceq B \).

In conclusion, as \(A \not\preceq B \) if and only if the equations \(XAY = B \) and \(XBY = A \) have solutions \(X_1, Y_1, X_2, Y_2 \) in \(N_n \), respectively, and as \(\not\preceq \not\preceq \not\preceq \) on \(N_n \) for
$n \geq 3$, the authors suspect that no further satisfactory characterization of γ exists. Thus, it is felt that the characterizations of the Green's relations on \mathcal{N}_n are essentially completed by this work.

REFERENCES

DEPARTMENT OF MATHEMATICS, TEXAS A & M UNIVERSITY, COLLEGE STATION, TEXAS 77843

(Current address of D. J. Hartfiel and C. J. Maxson)

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TENNESSEE, KNOXVILLE, TENNESSEE 37916

(Current address of R. J. Plemmons)