Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The Jordan decomposition of vector-valued measures


Authors: B. Faires and T. J. Morrison
Journal: Proc. Amer. Math. Soc. 60 (1976), 139-143
MSC: Primary 28A45; Secondary 46G10
DOI: https://doi.org/10.1090/S0002-9939-1976-0419723-X
MathSciNet review: 0419723
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper gives criteria for a vector-valued Jordan decomposition theorem to hold. In particular, suppose L is an order complete vector lattice and $ \mathcal{A}$ is a Boolean algebra. Then an additive set function $ \mu :\mathcal{A} \to L$ can be expressed as the difference of two positive additive measures if and only if $ \mu (\mathcal{A})$ is order bounded. A sufficient condition for a countably additive set function with values in $ {c_0}(\Gamma )$, for any set $ \Gamma $, to be decomposed into difference of countably additive set functions is given; namely, the domain being the power set of some set.


References [Enhancements On Off] (What's this?)

  • [1] J. Diestel, The Radon-Nikodym property and the coincidence of integral and nuclear operators, Rev. Roumaine Math. Pures Appl. 17 (1972), 1611-1620. MR 48 #12052. MR 0333728 (48:12052)
  • [2] -, Applications of weak compactness and bases to vector measures and vectorial integration, Rev. Roumaine Math. Pures Appl. 18 (1973), 211-224. MR 47 #5590. MR 0317042 (47:5590)
  • [3] J. Diestel and B. Faires, On vector measures, Trans. Amer. Math. Soc. 198 (1974), 253-271. MR 50 #2912. MR 0350420 (50:2912)
  • [4] B. Faires, Grothendieck spaces and vector measures, Ph.D. Dissertation, Kent State Univ., 1974.
  • [5] A. Grothendieck, Products tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. No. 16 (1955). MR 17, 763. MR 0075539 (17:763c)
  • [6] U. Krengel, Über den Absolutbetrag stetiger linearer Operatoren und seine Anwendung auf ergodische Zerlegungen, Math Scand. 13 (1963), 151-187. MR 31 #310. MR 0176034 (31:310)
  • [7] D. R. Lewis, A vector measure with no derivative, Proc. Amer. Math. Soc. 32 (1972), 535-536. MR 45 #5309. MR 0296248 (45:5309)
  • [8] A. L. Peressini, Ordered topological vector spaces, Harper and Row, New York, 1967. MR 37 #3315. MR 0227731 (37:3315)
  • [9] J. J. Uhl, Jr., Orlicz spaces of finitely additive set functions, Studia Math. 29 (1967), 19-58. MR 37 #1985. MR 0226395 (37:1985)
  • [10] -, Extensions and decompositions of vector measures, J. London Math. Soc. (2) 3 (1971), 672-676. MR 44 #4181. MR 0286974 (44:4181)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 28A45, 46G10

Retrieve articles in all journals with MSC: 28A45, 46G10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1976-0419723-X
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society