Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



An example of a doubly connected domain which admits a quadrature identity

Author: A. L. Levin
Journal: Proc. Amer. Math. Soc. 60 (1976), 163-168
MSC: Primary 30A86; Secondary 30A38
MathSciNet review: 0419777
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we construct a doubly connected domain $ D \mathrel\backepsilon 0$ such that $ \smallint {\smallint _D}f(z)d\sigma = Af(0) + Bf'(0)$ for any analytic and area integrable in D function f, which has a single-valued integral in D.

References [Enhancements On Off] (What's this?)

  • [1] D. Aharonov and H. Shapiro, Domains on which analytic functions satisfy quadrature identities, J. Analyse Math. (to appear). MR 0447589 (56:5899)
  • [2] -, A minimal area problem in conformal mapping, Royal Inst. Tech. Res. Bull., 1973, 34 pp.
  • [3] S. N. Mergelyan, On the completeness of systems of analytic functions, Uspehi Mat. Nauk 8 (1953), no. 4 (56), 3-63; English transl., Amer. Math. Soc. Transl. (2) 19 (1962), 109-166. MR 15, 411; 24 #A1410. MR 0058698 (15:411f)
  • [4] J. L. Walsh, Interpolation and approximation by rational functions in the complex domain, 2nd ed., Amer. Math. Soc. Colloq. Publ., vol. 20, Amer. Math. Soc., Providence, R.I., 1956. MR 0218588 (36:1672b)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 30A86, 30A38

Retrieve articles in all journals with MSC: 30A86, 30A38

Additional Information

Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society