ADDENDUM TO "ARITHMETIC MEANS OF FOURIER COEFFICIENTS"

RAJENDRA SINHA

Abstract. Let f be integrable and periodic with period 2π. Then a necessary and sufficient condition for \tilde{f} to be equivalent to a continuous function is that $-(1/w) \int \frac{f(x + u) - f(x - u)}{2 \tan(u/2)} du$ converges uniformly in x as $t \to 0^+$.

In what follows, we shall not distinguish between equivalent functions. Zamansky [2] (also see [3, Volume 1, p. 180, Exercise 5(a)]) proved the following.

Let f be continuous and periodic. Then a necessary and sufficient condition for f to be continuous is that

$$
\int \frac{f(x + u) - f(x - u)}{2 \tan(u/2)} du
$$

converges uniformly as $t \to 0^+$.

In this note we show that the restriction of continuity on f can be dropped in the above theorem. Equivalently we show the following.

Theorem. Let f be integrable and periodic. Then a necessary and sufficient condition for \tilde{f} to be continuous is that $\tilde{f}(x; t)$ converges uniformly in x as $t \to 0^+$, where $\tilde{f}(x; t)$ is defined in (1).

Proof. Sufficiency is obvious since $\lim_{t \to 0^+} \tilde{f}(x; t) = \tilde{f}(x)$ for a.e. x.

Conversely, let \tilde{f} be continuous. Take $\tilde{f} = g$ and $\tilde{f}(x; t) = g(x; t)$. Let T_S and T_H be defined as in [1]. Also let $g_x(t) = g(t + x)$. Now define $T_S g = T_S g_x$. Then T_S is a bounded operator on L^2 by [1, Lemma 1.1].

Also using [1, (1.1)] with $f_x(t)$ replaced by $h_x(t) = [g_x(t) + g_x(-t)]/2$, we can show that

$$
T_x g(t) = T_S h_x(t) = T_H h_x(t) = \frac{1}{2} \left[\pi g(x; t) + G_x(t) \right]
$$

for a.e. $t > 0$ where $G_x(t) = \sum_{n=1}^{\infty} \frac{a_n(x; g)}{n} \sin nt$.

It can easily be shown that the family $\{T_x g \mid x \in [0, 2\pi]\}$ is a normal family since $[0, 2\pi]$ is compact and

Received by the editors April 23, 1976.

Key words and phrases. Fourier series, conjugate function, normal family, equicontinuity.

Copyright © 1977, American Mathematical Society

243
\[x_n \to x \Rightarrow \|g_{x_n} - g_x\|_\infty \to 0 \Rightarrow \|T_sg_{x_n} - T_sg_x\|_\infty \to 0 \]

\[\Rightarrow \|T_{x_n}g - T_xg\|_\infty \to 0. \]

Hence, by the Ascoli-Arzela Theorem, the family \(\{T sg\mid x \in [0, 2\pi]\} \) is equicontinuous. Therefore \(\{T sg(t)\} \) converges uniformly in \(x \) as \(t \to 0^+ \).

Similarly we can show that the family \(\{G_x(t)\mid x \in [0, 2\pi]\} \) is also equicontinuous and, hence, \(G_x(t) \) converges uniformly in \(x \) as \(t \to 0^+ \). Therefore, by (2), \(g(x; t) \) converges uniformly in \(x \) as \(t \to 0^+ \). Hence the result.

References

Department of Mathematics, Birla Institute of Technology and Science, Pilani, Rajasthan State, India 333031