MONOTONE AND OPEN MAPPINGS ONTO ANR'S

JOHN J. WALSH

ABSTRACT. Let M be either a compact, connected p.l. manifold of dimension at least three or a compact, connected Hubert cube manifold and let Y be a compact, connected ANR (= absolute neighborhood retract). The main results of this paper are: (i) a mapping f from M to Y is homotopic to a monotone mapping from M onto Y if and only if $f_*: \pi_1(M) \to \pi_1(Y)$ is surjective; (ii) a mapping f from M to Y is homotopic to an open mapping from M onto Y if and only if $f_*(\pi_1(M))$ has finite index in $\pi_1(Y)$.

In [5] and [6], the author showed that a mapping f from a p.l. manifold M^m ($m \geq 3$) to a polyhedron P is homotopic to a monotone mapping from M onto P if $f_*: \pi_1(M) \to \pi_1(P)$ is surjective and is homotopic to an open mapping from M onto P if $f_*(\pi_1(M))$ has finite index in $\pi_1(P)$. Using these results, a recent result on open mappings, and results from infinite dimensional topology, we show that the above results are true if P is only assumed to be an ANR.

Terminology. We will use M^m to denote either an m-dimensional compact, connected, p.l. (={piecewise linear}) manifold with or without boundary or, if $m = Q$, a compact, connected Q-manifold (where Q is the Hilbert cube). By a mapping we mean a continuous function; a mapping is open if the image of each open set is open; a mapping is monotone (= UV) if each point-inverse is connected. We refer the reader to [1] for the definition of an absolute neighborhood retract (= ANR). Spaces are assumed to be separable and metric.

Main results.

Theorem 1. Let M be a compact, connected, p.l. manifold with dimension at least three or a compact, connected Q-manifold and let Y be a compact, connected ANR. A mapping f from M to Y is homotopic to a monotone mapping from M onto Y if and only if $f_*: \pi_1(M) \to \pi_1(Y)$ is surjective.

Theorem 2. Let M and Y be as above. A mapping f from M to Y is homotopic to an open mapping from M onto Y if and only if $f_*(\pi_1(M))$ has finite index in $\pi_1(Y)$.

Remark. The “only if” half of each of these theorems is well known; see...
Smale [3] and [4]. It follows from Fact 2 below that if \(f_* : \pi_1(M) \to \pi_1(Y) \) is surjective, then \(f \) is homotopic to a mapping from \(M \) onto \(Y \) which is both monotone and open.

We present below several results which will be used in the proofs of the above theorems.

FACT 1. Theorems 1 and 2 are true if \(Y \) is assumed to be a polyhedron or a \(Q \)-manifold. These cases are "essentially" contained in [5, Theorem 2.0] and [6, Theorem 4.0]. The theorems in [5] and [6] are stated for finite dimensional p.l. manifolds and polyhedra; however, using Chapman's result in [2] that every compact \(Q \)-manifold is homeomorphic to the product of a polyhedron and \(Q \), the proofs in [5] and [6] "work" without difficulty.

FACT 2. The main result in [7] is that a monotone mapping \(f \) from a compact manifold \(M^m, m \geq 3 \), onto any space \(Y \) can be homotoped (by an arbitrarily small homotopy) to a monotone open mapping \(g \) from \(M \) onto \(Y \) (with \(g^{-1}(y) \) and \(f^{-1}(y) \) having the same shape for each \(y \in Y \)). The proof in [7] "works" equally well if \(M \) is a compact \(Q \)-manifold.

FACT 3. A "key" step in the proofs depends on West's recent result in [8] that every compact ANR is the CE (= cell-like) image of a \(Q \)-manifold.

PROOF OF THEOREM 1. Let \(g: W \to Y \) be a CE mapping of a \(Q \)-manifold \(W \) onto \(Y \) and let \(\tilde{f}: M \to W \) be a "lift" of \(f \) with \(g \circ \tilde{f} \) homotopic to \(f \) (for example, let \(\tilde{f} = \iota \circ f \) where \(\iota \) is a "homotopy inverse" of \(g \)). Since \(g \) is a homotopy equivalence, we have that \(\tilde{f}_*: \pi_1(M) \to \pi_1(W) \) is surjective. Fact 1 implies that \(\tilde{f} \) is homotopic to a monotone mapping \(\tilde{h} \) from \(M \) onto \(W \); letting \(h = g \circ \tilde{h} \), \(h \) is a monotone mapping of \(M \) onto \(Y \) homotopic to \(f \).

PROOF OF THEOREM 2. Let \(x_0 \in M, y_0 \in Y \) with \(f(x_0) = y_0 \) and let \(p: (\tilde{Y},\tilde{y}_0) \to (Y,y_0) \) be the covering projection with

\[
p_*(\pi_1(\tilde{Y},\tilde{y}_0)) = f_*(\pi_1(M,x_0)).
\]

Since \(f_*(\pi_1(M,x_0)) \) has finite index in \(\pi_1(Y,y_0) \), we have that \(p^{-1}(y_0) \) is finite and, hence, \(\tilde{Y} \) is compact; also, \(\tilde{Y} \) is an ANR (see [1, Chapter 4, §10]). Let \(\tilde{f}: (M,x_0) \to (\tilde{Y},\tilde{y}_0) \) be a lifting of \(f \); it follows that \(\tilde{f}_*: \pi_1(M,x_0) \to \pi_1(\tilde{Y},\tilde{y}_0) \) is onto. Applying Theorem 1 and Fact 2 to \(\tilde{f} \), we have that \(\tilde{f} \) is homotopic to a monotone open mapping \(\tilde{h} \) from \(M \) onto \(\tilde{Y} \); letting \(g = p \circ \tilde{h} \), \(g \) is an open mapping from \(M \) onto \(Y \) homotopic to \(f \).

REFERENCES

8. J. West, *Compact ANR’s have finite type* (preprint).

Department of Mathematics, University of Oklahoma, Norman, Oklahoma 73069