AN IMPROVEMENT ON THE UPPER BOUND OF THE NILPOTENCY CLASS OF SEMIDIRECT PRODUCTS OF \(p \)-GROUPS

LARRY J. MORLEY AND JOHN D. P. MELDRUM

Abstract. The semidirect product of a group \(A \) by a group \(B \) is necessarily nilpotent only in the case \(A \) and \(B \) are \(p \)-groups for the same prime \(p \), \(A \) is nilpotent of bounded exponent, and \(B \) is finite. In an earlier paper Morley has established an upper bound on the class of a nilpotent semidirect product of an abelian \(p \)-group of bounded exponent by an arbitrary finite \(p \)-group. In this paper this result is improved by considering a direct product decomposition for \(B \) and also by extending the results to give a new upper bound on the class in the most general case. The standard wreath product of \(A \) by \(B \) is a nilpotent semidirect product of relatively large class in the case \(A \) and \(B \) satisfy the conditions above, and this new bound improves the known results on the class of these wreath products.

1. Introduction. A group which is a semidirect product of \(A \) by \(B \) can be assumed nilpotent only with the conditions that \(A \) and \(B \) are \(p \)-groups for the same prime number \(p \), \(A \) is nilpotent of bounded exponent, and \(B \) is finite (Baumslag [1]). The standard wreath product of \(A \) by \(B \) contains all semidirect products of \(A \) by \(B \) and the exact class of \(A \wr B \) has been given by Liebeck [3] in the case \(A \) and \(B \) are abelian \(p \)-groups, \(A \) is of bounded exponent and \(B \) is finite. Meldrum [4] has given the class of \(A \wr B \) in the case \(A \) is nilpotent of exponent \(p \) and \(B \) is finite abelian. Morley [5] derives an upper bound for the class of a group which is a semidirect product of an abelian \(p \)-group of exponent \(p^{n+1} \) by an arbitrary finite \(p \)-group. In this paper, an improvement in the upper bound of [5] is established and the new bound is also extended to the most general case of a nilpotent semidirect product of \(p \)-groups. The improvement in the bound is accomplished by considering a direct product factorization of the group \(B \).

2. Notation and preliminary results. The notation and definitions used in this paper agree with, but in cases generalize, those in [5]. \((g_1, \ldots, g_n)\) and \((g_1, (n-1)g_2)\) indicate commutator elements of length \(n \), the second one having the last \(n-1 \) entries all \(g_2 \). An arbitrary ascending central series (see [2]) of the group \(G \) is denoted \(G_0 < G_1 < \cdots \) and the well-known lower
central series is written \(G(i) \), \(i = 0, 1, 2, \ldots \). The nilpotency class of \(G \) is denoted \(\text{Cl} (G) \) and \(\text{Cl} (G) = L \) iff \(G_{(L+1)} = E \) and \(G_{(L)} \neq E \), \(E \) the trivial subgroup containing the identity element only. If \(H_i, i = 1, \ldots, n, \) are subgroups of \(G \), then \((H_1, \ldots, H_n) \) denotes the subgroup of \(G \) generated by \(\{(h_1, \ldots, h_n) \mid h_i \in H_i \} \). The well-known commutator identities

\[
(2.1) \quad (x, yz) = (x, z)(x, y)(x, y, z), \quad (xy, z) = (x, z)(x, z, y)(y, z),
\]

are used in the proof of Theorem 3.1.

For an extension \(W \) of \(A \) by \(B \) which is a semidirect product we assume both \(A \) and \(B \) are subgroups of \(W \).

If \(B = B_1 \times B_2 \times \cdots \times B_m \) is a direct product of finite \(p \)-groups, then \(B_{k,0} < \cdots < B_{k,L(k)} \) denotes an ascending central series of \(B_k \) contained in \(B \). Since \(B_{k,i}/B_{k,i-1} \) is a finite abelian \(p \)-group, \(B_{k,i} \) contains a minimal independent set of generators modulo \(B_{k,i-1} \). The elements of such a generating set are written \(\{b_{k,i,j}\}, i = 1, \ldots, r(k, i), r(k, i) \) being the cardinality of the generating set which is called the rank of the factor group.

Definition 2.2. Let \(p(k, i, j), 1 \leq j \leq r(k, i) \), denote the descending prime power orders of the cyclic groups in the decomposition of \(B_{k,i}/B_{k,i-1} \), \(k = 1, \ldots, m \) and \(i = 1, \ldots, L(k) \), for a specified ascending central series of length \(L(k) \) for \(B_k \). Define \(L = \max_{1 \leq k \leq m} L(k) \) and for \(L(k) < i \leq L \) set \(p(k, i, j) = 1 \) and \(r(k, i) = 0 \). Then we define

\[
\lambda_{ki} = \sum_{j=1}^{r(k, i)} (p(k, i, j) - 1), \quad 1 \leq k \leq m \text{ and } 1 \leq i \leq L,
\]

\[
d(k, t, s) = \prod_{j=t+1}^{s} p(k, j, 1), \quad 1 \leq k \leq m, 1 \leq s \leq L, \text{ and } 0 \leq t \leq s,
\]

and

\[
P_k(y_1, \ldots, y_s) = \sum_{t=1}^{s} d(k, t, s)y_t \quad \text{for } s = 1, 2, \ldots, L.
\]

The multivariable linear polynomials \(P_k(y_1, \ldots, y_s) \) have coefficients determined by the exponents of the factor groups \(B_{k,i}/B_{k,i-1} \) and the \(\lambda_{ki} \) are dependent upon the complete cycle structure of these factor groups.

3. **The upper bound.** In the theorems of this section \(B = B_1 \times \cdots \times B_m \) is a direct product of finite \(p \)-groups. The terms expressed are defined using arbitrary but specified ascending central series for the respective direct factors of \(B \) using Definition 2.2.

Theorem 3.1. Let \(W \) be a semidirect product of \(A \) by \(B \), \(A \) abelian of exponent \(p^{n+1} \). Then

\[
\text{Cl} (W) \leq \sum_{k=1}^{m} P_k(\lambda_{k1}, \ldots, \lambda_{kL(k)}) + n(p - 1)p^{-1} \max_{1 \leq k \leq m} d(k, 0, L(k)) + 1.
\]
Proof. Let
\[c = \sum_{k=1}^{m} P_k(\lambda_{k1}, \ldots, \lambda_{kL(k)}) + n(p - 1)p^{-1} \max_{1 \leq k \leq m} d(k, 0, L(k)) + 1. \]

We will use induction on \(m \). The result for \(m = 1 \) is given in [5, Theorem 4.10]. So assume that the result holds for \(m - 1 \).

Assume \(\text{Cl} (W) > c \) and obtain a contradiction. Without loss of generality we assume \(\text{Cl} (W) = c + 1 \) and choose \(e \neq w \in W_{c+1} \). By [5, Corollary 3.4], \(c > L = \text{Cl} (B) \) and \(w = (x, b_0, b_1, \ldots, b_{c-q}) \) where \(b_0 \in B(q) \) and \(b_i \in B, 1 \leq i \leq c - q \) and \(1 \leq q \leq L \). By the basic commutator identities, using the fact that \(A \) is abelian and \(W_{c+2} = E \), the map \(b_i \rightarrow (x, b_0, b_1, \ldots, b_{c-q}) \) is a homomorphism for each \(i, 0 \leq i \leq c - q \). So we may assume that \(b_i \in B_k \) for some \(k = k(i), 0 \leq i \leq c - q \). Since \((B_k, B_j) = E \) for \(k \neq j \), [5, Lemma 4.6] allows us to assume that all the elements \(b_i \) from a given \(B_k \) follow each other. Let the number of entries from \(B_k \) be \(c_k \). Then \(c = \sum_{k=1}^{m} c_k \).

Without loss of generality we may assume that
\[c_m > \sum_{k=1}^{m} P_k(\lambda_{m1}, \ldots, \lambda_{mL(m)}) + (n - t_m)(p - 1)p^{-1} d(m, 0, L(m)), \]
where \(t_m \) is minimal subject to this inequality holding. By [5, Theorem 4.10] applied to \(A \cdot B_m \), we may assume that \((x, b_1, \ldots, b_{c_m}) \) has order dividing \(p^{t_m} \), where \(b_i \in B_m, 1 \leq i \leq m \).

If \(t_m = 0 \), then \(w = e \) and the contradiction is obtained. So assume that \(t_m \neq 0 \). Then, by the minimality of \(t_m \),
\[c' = c - c_m \geq \sum_{k=1}^{m-1} P_k(\lambda_{k1}, \ldots, \lambda_{kL(k)}) \]
\[+ (t_m - 1)(p - 1)p^{-1} \max_{1 \leq k \leq m-1} d(k, 0, L(k)) + 1. \]

Let \(w' = (x', b_{c_m+1}, \ldots, b_c) \) where \(x' = (x, b_1, \ldots, b_{c_m}) \). By the induction hypothesis on \(m, w' = e \) since \(w' \in A \cdot (B_1 \times \cdots \times B_{m-1}) \). This gives the final contradiction.

The proof of the following theorem is an adaption of the proof of Theorem 5.12 of [4].

Theorem 3.2. Let \(W \) be a semidirect product of \(A \) by \(B = B_1 \times \cdots \times B_m \), \(A \) a nilpotent \(p \)-group of class \(c \) and \(B_k \) a finite \(p \)-group for each \(k = 1, \ldots, m \). Suppose \(A_0, A_1, \ldots, A_c \) is an ascending central series of \(A \). If \(A_j/A_{j-1} \) has exponent \(p^{n(j)} \) for \(1 \leq j \leq c \), then
\[\text{Cl} (W) \leq c \left(\sum_{k=1}^{m} P_k(\lambda_{k1}, \ldots, \lambda_{kL(k)}) \right) \]
\[+ \left(\sum_{j=1}^{c} (n(j) - 1)(p - 1)p^{-1} \max_{1 \leq k \leq m} d(k, 0, L(k)) \right) + c. \]
Proof. We proceed by induction on c. Theorem 3.1 is just the statement of this result for $c = 1$ so we let $c > 1$. Define

$$
t(j) = \sum_{k=1}^{m} P_{k}(\lambda_{k1}, \ldots, \lambda_{kL(k)}) + (n(j) - 1)(p - 1)p^{-1} \max_{1 \leq k \leq m} d(k, 0, L(k)) + 1,
$$

Now A_1 is a normal subgroup of W and W/A_1 is a semidirect product of A/A_1 by B. By the induction hypothesis $\text{Cl}(W/A_1) \leq \sum_{j=2}^{c} t(j)$ since $(A_j/A_1)/(A_{j-1}/A_1)$ is isomorphic to A_j/A_{j-1} for $2 \leq j \leq c$. Thus we have that $W(t) \subseteq A_1$ for $t = \sum_{j=2}^{c} t(j) + 1$. The result now follows from Theorem 3.1 since A_1 is contained in the centre of A implies $(A_1, kW) \subseteq (A_1, kB)$.

References

Department of Mathematics, Western Illinois University, Macomb, Illinois 61455 (Current address of L. J. Morley)

Department of Mathematics, University of Edinburgh, Edinburgh EH8 9YL, Great Britain

Current address: (J. D. P. Meldrum): Mathematics Department, James Clerk Maxwell Building, The King's Buildings, Mayfield Road, Edinburgh EH9 3JZ, Scotland