S-LIMITS AND α-SUMMABILITY

HOWARD T. BELL

Abstract. Certain classes of subspaces of m are examined that are the domains of uniqueness of certain Banach type limits. These subspaces are identified as the bounded convergence domains of α-summability. As a corollary it is shown that the closure of bs in m is f_0. Also we characterize those matrices whose convergence domains include these spaces in a manner analogous to Lorentz' characterization of strongly regular matrices.

S-limits. Throughout this paper, S will denote a fixed regular matrix with $\|S\| = 1$. We shall limit our discussion to sequences and matrices of real numbers. A S-limit is a linear functional, L, on m, the space of bounded sequences, that satisfies: (i) $L(x) > 0$ if $x_n > 0$, $n = 1, 2, \ldots$; (ii) $L(\overline{1}) = \overline{1}$ ($\overline{1}$ is the constant sequence of 1's); (iii) $L(Sx) = L(x)$ for all $x \in m$. A Banach limit is a T-limit where T is the translation matrix, i.e. $(Tx)_n = x_{n+1}$. A matrix B is S-invariant if $B(S - I)$ maps every bounded sequence to a null sequence. (I is the identity matrix.)

S-limits need not exist for every regular matrix S. Let $S = (a_{nk})$ where $a_{nk} = 0$ if $k > 2n$ and $a_{nk} = 1$ if $k = 2n$. For $1 \leq k \leq 2n$, $a_{nk} = -1/n$ if k is odd, $a_{nk} = 1/n$ if k is even. S is regular, but for $x = \{1, 0, 1, 0, \ldots\}$, we have $Sx = \{-1, -1, -1, \ldots\}$. Now if L were an S-limit, we would have $0 < L(x) = L(Sx) = -1$. Thus S-limits need not exist.

Theorem 1. If there is a nonnegative regular S-invariant matrix, then S-limits exist.

Proof. Suppose B is such a matrix. Define a functional q on m by $q(x) = \limsup Bx$. Then q is sublinear and nonnegatively homogeneous. For $x \in c$ we have, by the regularity of B, that $\lim x = q(x)$. By the Hahn-Banach Theorem, we can extend \lim to a linear functional, L, on m s.t. $L(x) \leq q(x)$ for all $x \in m$. Thus $-q(-x) \leq -L(-x) = L(x) \leq q(x)$, for all $x \in m$.

Since B is nonnegative, for $x_n \geq 0$, $n = 1, 2, \ldots$, we have $0 \leq \liminf Bx = -q(-x) \leq L(x)$. So L is nonnegative. Also for $x \in m$, $\lim B(S - I)x = 0$; thus $-q(-(S - I)x) = 0 = q((S - I)x)$ which proves $L((S - I)x) = 0$. So L is an S-limit.

We note that the Cesàro matrix is a nonnegative regular T-invariant matrix;

Received by the editors September 12, 1975.

AMS (MOS) subject classifications (1970). Primary 40C99, 40D05, 40G05; Secondary 40D25, 42A20.
hence, as a corollary, we have that Banach limits exist.

For a particular S, the determination of the existence of an S-invariant matrix is facilitated by Schur's Theorem (see, for example, [8, p. 20]) which gives necessary and sufficient conditions for $B(S - I)$ to map m to n, the space of null sequences.

In the case where S-limits exist for a particular regular matrix S, we shall consider the following sets which are the domains of uniqueness of these limits:

$$
\Lambda(S) = \{ x \in m : L(x) = L'(x) \text{ for every pair of } S\text{-limits } L, L' \},
$$

$$
\Theta(S) = \{ x \in m : L(x) = 0 \text{ for every } S\text{-limit } L \}.
$$

Note that $\Lambda(S)$ and $\Theta(S)$ are closed subspaces of m since each S-limit L is nonnegative, hence continuous.

We shall identify $\Theta(S)$ and $\Lambda(S)$, in certain cases, as the bounded convergence domains of the method of summability introduced in [3].

@-summability. For $v = 1, 2, \ldots,$ let $A^v = (a_{nk}^v)$ be an infinite matrix of real numbers. Let \mathfrak{a} denote the sequence of matrices $\{A^v\}$. A sequence $x = \{x_n\}$ is \mathfrak{a} or $\{A^v\}$-summable to a number l if $\lim A^v x = l$ uniformly in $v = 1, 2, \ldots$. We say $\mathfrak{a}x$ converges to l and write $\lim\mathfrak{a}x = l$. \mathfrak{a} is said to be regular if $\mathfrak{a}x$ converges to l whenever x is convergent to l.

$$
c_{\mathfrak{a}} = \{ x : \mathfrak{a}x \text{ converges} \}
$$

$$
n_{\mathfrak{a}} = \{ x : \mathfrak{a}x \text{ converges to } 0 \}.
$$

For a fixed regular matrix S, let Σ denote the sequence of matrices $\{S^0, S^1, S^2, \ldots\}$, where S^v denotes the product of S with itself v times. We shall use the notation $A \cdot \Sigma$ to denote the sequence of matrices $\{R^p\}$ where $(R^p x)_n = \Sigma a_{nk}(S^k x)_p$. (Throughout, all sums run from $k = 1$ to ∞ unless otherwise noted.) Note that for T, the translation matrix, $(T^k x)_p = (T^p x)_k$, so if $S = T$, $A \cdot \Sigma$ reduces to the sequence of ordinary matrix products of A and powers of T.

Theorem 2. Suppose A is regular. If A is T-invariant, then $A \cdot \Sigma$ is S-invariant, that is $A \cdot \Sigma(S - I)x$ converges to 0 for all $x \in m$.

Proof. Let $\mathfrak{R} = A \cdot \Sigma$. We show \mathfrak{R} is S-invariant. For $x \in m$,

$$(R^p(S - I)x)_n = \Sigma a_{nk}(S^k(S - I)x)_p = \Sigma a_{nk}[(S^{k+1} x) - (S^k x)_p].$$

So

$$
|\lim (R^p(S - I)x_n) | \leq |\Sigma a_{nk-1}(S^k x)_p - \Sigma a_{nk}(S^k x)_p| \\
\leq \Sigma |a_{nk-1} - a_{nk}| ||S^k|| ||x||.
$$

Since A is T-invariant, $\Sigma|a_{nk-1} - a_{nk}| \to 0$ as $n \to \infty$ by Shur's Theorem.
Hence \((R^p(S - I)x)_n \rightarrow 0\) as \(n \rightarrow \infty\) uniformly in \(p\). This shows \(A \cdot \Sigma\) is \(S\)-invariant.

Thus we have the following information. If \(A\) is a nonnegative regular matrix which is \(T\)-invariant and \(S\)-invariant, then Theorem 1 states \(S\)-limits exist and Theorem 2 states \(A \cdot \Sigma\) is \(S\)-invariant.

Theorem 3. If \(A\) is regular, then \(n_{A\Sigma} \cap m \subset \Theta(S)\).

Proof. Suppose \(x \in n_{A\Sigma} \cap m\). Let \(t_n = \{t^v_n, v = 1, 2, \ldots\}\) where \(t^v_n = \Sigma a_{nk}(S^kx)_v\). Thus \(t^v_n \rightarrow 0\) as \(n \rightarrow \infty\) uniformly in \(v = 1, 2, \ldots\), that is \(t_n \rightarrow 0\) in \((m, \|\|_{\infty})\). Let \(L\) be any \(S\)-limit. \(L\) is continuous on \(m\) so \(L(t_n) \rightarrow 0\) as \(n \rightarrow \infty\).

We shall now show \(L(t_n)\) tends to \(L(x)\). Now, for \(n\) fixed we have

\[
\left| t^v_n - \sum_{k=1}^{N} a_{nk}(S^kx)_v \right| \leq \|x\| \sum_{k=N+1}^{\infty} |a_{nk}| \|S^k\| \leq \|x\| \sum_{k=N+1}^{\infty} |a_{nk}|
\]

since \(\|S\| = 1\). For each \(n\), \(\sum_{k=N+1}^{\infty} |a_{nk}| \rightarrow 0\) as \(N \rightarrow \infty\) since \(A\) is regular. Thus \(\sum_{k=1}^{N} a_{nk}(S^kx)_v \rightarrow t^v_n\) as \(N \rightarrow \infty\) uniformly for \(v = 1, 2, \ldots\) for each \(n\). This implies, for an \(S\)-limit \(L\), that

\[
L(t_n) = \lim_{N \rightarrow \infty} \sum_{k=1}^{N} a_{nk} L(S^kx) = \lim_{N \rightarrow \infty} \sum_{k=1}^{N} a_{nk} L(x) = L(x) \sum_{k=1}^{\infty} a_{nk}
\]

since \(L\) is continuous and \(S\)-invariant. Hence \(\lim_{n \rightarrow \infty} L(t_n) = L(x)\) since \(A\) is regular.

Therefore, since \(L(t_n)\) tends to 0 and to \(L(x)\), \(x \in \Theta(S)\), which is the desired result.

Theorem 4. The closure of \((S - I)[m]\) in \((m, \|\|)\) is \(\Theta(S)\).

Proof. Since an \(S\)-limit \(L\) is \(S\)-invariant, clearly \((S - I)[m] \subset \Theta(S)\). We shall show that every positive linear functional which is zero on \((S - I)[m]\) is also zero on \(\Theta(S)\). (The positive linear functionals are total in the dual of \(\Theta(S)\); see, e.g. [1, Theorem 4, p. 217].)

Suppose \(q\) is a positive linear functional on \(\Theta(S)\) which vanishes on \((S - I)[m]\). We can extend \(q\) to a positive linear functional \(G\) on \(m\) with \(G(\bar{1}) = 1\) (see, e.g., [5, p. 20]). Also \(G((S - I)x) = 0\) for all \(x \in m\), so \(G\) is \(S\)-invariant. Hence \(G\) is an \(S\)-limit, so \(G\) is zero on \(\Theta(S)\). Therefore the closure of \((S - I)[m]\) is \(\Theta(S)\).

Corollary 1. \(\overline{bs} = f_0\).

Proof. \(bs = \{x: \sup_n \left| \sum_{k=1}^{n} x_k \right| < \infty\}\). It is easy to show \(bs = (T - I)[m]\) where \(T\) is the translation matrix.

\(f_0\) is the space of sequences that are almost convergent to zero which is precisely \(\Theta(T)\).

The following result links \(S\)-limits to \(A \cdot \Sigma\) summability.
Theorem 5. If A is regular and if $A \cdot \Sigma$ is S-invariant, then $n_{A \cdot \Sigma} \cap m = \Theta(S)$.

Proof. $A \cdot \Sigma$ is S-invariant, so $(S - I)[m] \subseteq n_{A \cdot \Sigma} \cap m$ and $n_{A \cdot \Sigma} \cap m \subseteq \Theta(S)$ from Theorem 3. Since $n_{A \cdot \Sigma} \cap m$ is closed in m and $(S - I)[m] = \Theta(S)$, we have $n_{A \cdot \Sigma} \cap m = \Theta(S)$.

Corollary. If, in addition, $\bar{1} \in c_{A \cdot \Sigma}$, then $c_{A \cdot \Sigma} \cap m = \Lambda(S)$.

We note that $\bar{1} \in c_{A \cdot \Sigma}$ if $A \cdot \Sigma$ is regular or if A is regular and S is positive with all rows adding up to 1. A is said to be compatible to S if A is regular, $A \cdot \Sigma$ is a regular, S-invariant sequence of matrices. Thus if A is compatible to S, $c_{A \cdot \Sigma} \cap m = \Lambda(S)$. Necessary and sufficient conditions for compatibility can be formulated using Silverman-Toeplitz and Shur Theorems for α-summability found in [2].

Comparison theorems. We shall assume A is compatible to S. Let $\bar{\Sigma} = A \cdot \Sigma$. Clearly if B were also compatible to S, then $c_{A \cdot \Sigma} \cap m \subseteq c_{B \cdot \Sigma} \cap m$. We show that among regular matrices the compatible ones are the “strongest”.

Theorem 6. If B is regular, then $n_{B \cdot \Sigma} \cap m \subseteq n_{A \cdot \Sigma} \cap m$ if, in addition, $1 \in c_{B \cdot \Sigma}$, $c_{B \cdot \Sigma} \cap m \subseteq c_{A \cdot \Sigma} \cap m$.

Proof. Theorem 3 gives that $n_{B \cdot \Sigma} \cap m \subseteq \Theta(S)$ and compatibility gives that $n_{A \cdot \Sigma} \cap m = \Theta(S)$. This gives the desired conclusion.

If $1 \in c_{B \cdot \Sigma}$, since $A \cdot \Sigma$ is regular, we have $c_{B \cdot \Sigma} \cap m \subseteq c_{A \cdot \Sigma}$.

We say a matrix B is strongly θ-regular if $Bx \to l$ whenever $\theta x \to l$. For $\mathcal{S} = C \cdot \Gamma$ where C is a Cesàro matrix and $\Gamma = \{T^n\}$ the sequence of powers of T, strongly \mathcal{S}-regular corresponds to strongly regular [6]. We have the following generalization of Lorentz’ Theorem.

Theorem 7. B is strongly \mathcal{S}-regular on m if and only if B is regular and S-invariant (or $\lim_{n \to \infty} \sum \left|(BS)_{nk} - B_{nk}\right| = 0$).

Proof. Suppose B is \mathcal{S}-regular on m. Then

$$n_B \cap m \supseteq n_{A \cdot \Sigma} \cap m \supseteq (S - I)[m].$$

So B is S-invariant. $A \cdot \Sigma$ is regular, so $x \to l$ implies $\mathcal{S}x \to l$, thus $Bx \to l$. B is thus regular.

Conversely, B is S-invariant implies $n_B \cap m \supseteq (S - I)[m]$. $n_B \cap m$ is closed, so $n_B \cap m \supseteq \Theta(S)$. B is regular, thus $c_B \cap m \supseteq \Lambda(S)$; that B and \mathcal{S} are consistent follows from $n_B \cap B \supseteq \Theta(S)$.

As a consequence, we have a shortened proof of Lorentz’ characterization of strongly regular matrices [6, Theorem 7].

Corollary. B is strongly regular if and only if B is regular and $\lim_{n \to \infty} \sum \left|b_{nk} - b_{n,k+1}\right| = 0$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Proof. This is the above theorem applied to almost convergence, noting that \((BT)_{nk} = B_{n,k-1}\).

For \(\mathfrak{U} = \{A^n\}\), consider the set \(\mathfrak{U}\) of all matrices \(U\) where the \(n\)th row of \(U\)
is the \(n\)th row of \(A^n\) for some \(v\). Following along the idea of G. M. Petersen [7], it can be shown [2] that \(\mathfrak{U}\) sums exactly those sequences that are summed by every member of \(\mathfrak{U}\) to the same value.

The following generalizes a finding of R. J. Duran [4] for almost convergence.

Theorem 8. \(c_s \cap m = \cap \{c_B \cap m : B \text{ is regular and } S\text{-invariant}\}\).

Proof. If \(B\) is regular and \(S\)-invariant, it is strongly \(S\)-regular on \(m\), hence \(c_s \cap m \subseteq c_B \cap m\). Also, \(c_s = \cap \{c_{U'} : U \in \mathfrak{U}\}\) where \(\mathfrak{U}\) is described above. \(c_s \subseteq c_U\) are consistent implies that each \(U\) is strongly \(S\)-regular and, hence, regular and \(S\)-invariant. Thus \(\mathfrak{U}\) is a subcollection of all regular and \(S\)-invariant matrices, so \(\cap \{c_{U'} : U \in \mathfrak{U}\} \supseteq \cap \{c_B : B \text{ is regular and } S\text{-invariant}\}\), so \(c_s \cap m = \cap \{c_B \cap m : B \text{ is regular and } S\text{-invariant}\}\).

REFERENCES

Department of Mathematics, Shippensburg State College, Shippensburg, Pennsylvania 17257