A limit theorem for measurable random processes and its applications
Author:
L. Š. Grinblat
Journal:
Proc. Amer. Math. Soc. 61 (1976), 371376
MSC:
Primary 60B10
MathSciNet review:
0423450
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Let the measurable random processes and be defined on . There exists such that for all and we have . The following assertion is valid: if for any finite set of points the joint distribution of converges to the joint distribution of , and if for all , then for any continuous functional on the distribution of converges to the distribution of . This statement immediately implies the convergence of distributions in some limit theorems for the sums of independent random variables (for example, in one of the theorems of P. Erdös and M. Kac) and in some statistical criteria (for example, in the criterion of Cramér and von Mises).
 [1]
R.
H. Cameron and W.
T. Martin, The Wiener measure of Hilbert neighborhoods in the space
of real continuous functions, J. Math. Phys. Mass. Inst. Tech.
23 (1944), 195–209. MR 0011174
(6,132a)
 [2]
P.
Erdös and M.
Kac, On certain limit theorems of the
theory of probability, Bull. Amer. Math.
Soc. 52 (1946),
292–302. MR 0015705
(7,459b), http://dx.doi.org/10.1090/S000299041946085602
 [3]
D.
A. Darling, The KolmogorovSmirnov, Cramérvon Mises
tests, Ann. Math. Statist 28 (1957), 823–838.
MR
0093870 (20 #390)
 [4]
I.
I. Gikhman and A.
V. Skorokhod, Introduction to the theory of random processes,
Translated from the Russian by Scripta Technica, Inc, W. B. Saunders Co.,
Philadelphia, Pa., 1969. MR 0247660
(40 #923)
 [5]
Kôsaku
Yosida, Functional analysis, Die Grundlehren der
Mathematischen Wissenschaften, Band 123, Academic Press Inc., New York,
1965. MR
0180824 (31 #5054)
 [1]
 R. H. Cameron and W. T. Martin, The Wiener measure of Hilbert neighborhoods in the space of real continuous functions, J. Math. Physics Mass. Inst. Tech. 23 (1944), 195209. MR 6, 132. MR 0011174 (6:132a)
 [2]
 P. Erdös and M. Kac, On certain limit theorems of the theory of probability, Bull. Amer. Math. Soc. 52 (1946), 292302. MR 7, 459. MR 0015705 (7:459b)
 [3]
 D. A. Darling, The KolmogorovSmirnov, Cramervon Mises tests, Ann. Math. Statist. 28 (1957), 823838. MR 20 #390. MR 0093870 (20:390)
 [4]
 I. I. Gihman and A. V. Skorohod, Introduction to the theory of random processes, ``Nauka", Moscow, 1965; English transl., Saunders, Philadelphia, Pa., 1969. MR 33 #6689; 40 #923. MR 0247660 (40:923)
 [5]
 K. Yosida, Functional analysis, Grundlehren math. Wiss., Band 123, Academic Press, New York; SpringerVerlag, Berlin, 1965. MR 31 #5054. MR 0180824 (31:5054)
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC:
60B10
Retrieve articles in all journals
with MSC:
60B10
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029939197604234502
PII:
S 00029939(1976)04234502
Article copyright:
© Copyright 1976 American Mathematical Society
