STRICT TOPOLOGY AND P-SPACES

SURJIT SINGH KHURANA AND SEKI ALEXANDER CHOO

ABSTRACT. For a completely regular Hausdorff space X and a normed space E, let $C_b(X, E)$ be the space of all bounded continuous functions from X into E with strict topology β_0. It is proved that if X is a P-space, $(C_b(X, E), \beta_0)$ is Mackey; if, in addition, E is complete, then $(C_b(X, E), \beta_0)$ is strongly Mackey.

In this paper, X denotes a completely regular Hausdorff space, K the field of real or complex numbers (we shall call them scalars), $C_b(X)$ all scalar-valued bounded continuous functions on X, $(E, \|\cdot\|)$ a normed space over K, $C_b(X, E)$ all bounded continuous functions from X into E, and E' the topological dual of X. We denote by $\langle \cdot, \cdot \rangle$ the natural bilinear form on $E \times E'$ or $E' \times E$. All vector spaces are taken over K. Let $\mathcal{B}(X)$ be all Borel subsets of X and $M_1(X)$ all tight scalar-valued Borel measures on X [1], [4], [10]. We put

$$M_1(X, E') = \{\mu: \mathcal{B}(X) \to E': \mu \text{ finitely additive},$$

and $|\mu| \in M_1(X)$, where for any $B \in \mathcal{B}(X)$, $|\mu|(B) = \sup \{\sum |\mu(B_i), x_i|: \{B_i\} \text{ a finitely Borel partition of } B \text{ and } \{x_i\} \subset E \text{ with } \|x_i\| \leq 1, \forall i\}$

(see [1], [4]). For a $\mu \in M_1(X, E')$ and $x \in E$, $\mu_x: \mathcal{B}(X) \to K$, defined by $\mu_x(B) = \langle \mu(B), x \rangle$, $B \in \mathcal{B}(X)$, is in $M_1(X)$. Integration with respect to a $\mu \in M_1(X, E')$ is taken in the sense of [1]. For a $\mu \in M_1(X, E')$ and $f \in C_b(X, E)$, $|\mu(f)| \leq |\mu| (\|f\|)$, where $\|f\|: X \to R$, $\|f\|(x) = \|f(x)\| [1, p. 851].$

The strict topology β_0 on $C_b(X, E)$ is defined by the family of seminorms $\|\cdot\|_h$, as h varies through all scalar-valued functions on X, vanishing at infinity, $\|f\|_h = \sup_{x \in X} |h(x)f(x)|$, $f \in C_b(X, E)$. It is proved in [1] that $C_b(X) \otimes E$ is dense in $(C_b(X, E), \beta_0)$, $(C_b(X, E), \beta_0)' = M_1(X, E')$, and β_0 is the finest locally convex topology which coincides with compact-open topology on norm-bounded subsets of $C_b(X, E)$; also bounded subsets of $(C_b(X, E), \beta_0)$.
are norm-bounded. (For $E = K = R$ this result is proved in [9], but it immediately carries over to the case when E is a normed space since $M_t(X, E')$ is a closed subspace of the Banach space $(C_b(X, E), \|\cdot\|')$.) Considering $M_t(X, E')$ a Banach space, with norm induced by $(C_b(X, E), \|\cdot\|')$, we have $\|\mu\| = \|\mu(X)\|, \forall \mu \in M_t(X, E')$ (it is a simple verification, cf. [4, p. 315]).

A completely regular Hausdorff space X is called a P-space if every G_δ set is open in X [2, p. 63]. In this paper we prove that if X is a P-space then $(C_b(X, E), \beta_0)$ is Mackey; if, in addition, E is complete, then E is strongly Mackey. A Hausdorff locally convex space G is called strongly Mackey if every $\sigma(G', G)$ relatively countably compact subset of G' is equicontinuous (we refer to [8] for locally convex spaces).

We first prove the following lemmas.

Lemma 1. Let 2^N denote all subsets of N, with product topology. If $\lambda_n : 2^N \to K$ is a sequence of countably additive measures (this implies they are continuous) and $\lim \lambda_n(M) = \lambda(M)$ exists $\forall M \subseteq N$, then $\lambda_n \to \lambda$ uniformly on 2^N.

Proof. This is a particular case of [6, Lemma 1]. To prove this we have only to note that by Osgood's theorem [5, p. 86], the sequence $\{\lambda_n\}$ is equicontinuous at some point of 2^N. For completeness we give details.

Since $\{0,1\}$ is a topological group, with discrete topology $(1 + 1 = 0, \mod 2), G = 2^N = \{0,1\}^N$, with product topology, is also a topological group, which we write additively with neutral element 0. Fix $\epsilon > 0$ and suppose λ_n's are equicontinuous at $p \in G$. There exist a 0-nbd

$$V = \left(\prod_{i=1}^m \xi_i \right) \left(\prod_{j=m+1}^\infty J_j \right),$$

where $\xi_i = \{0\}, 1 \leq i \leq m$, and $J_j = \{0,1\}, m + 1 \leq j < \infty$, such that

$$|\lambda_n(p + V) - \lambda_n(p)| < \epsilon/8, \forall n.$$

Let $p = (p_1, p_2, \ldots, p_m, p_{m+1}, \ldots)$ and $p' = (p_1, p_2, \ldots, p_m, 0, 0, \ldots)$ and $p'' = (0, 0, \ldots, 0, p_{m+1}, p_{m+2}, \ldots). p = p' + p''$. Fix $v \in V$ and take $v' \in V$ such that $p'' + v' = v$. From (*) we get $|\lambda_n(p' + p'' + v') - \lambda_n(p' + p'')| < \epsilon/8$ and so $|\lambda_n(p') + \lambda_n(v) - \lambda_n(p') - \lambda_n(p'')| < \epsilon/8$ (note λ_n's are additive). This gives $|\lambda_n(v) - \lambda_n(p'')| < \epsilon/8, \forall v \in V$. In particular, $|\lambda_n(p'')| < \epsilon/8$. Combining these results we get $|\lambda_n(V)| < \epsilon/4, \forall n$. Since $\forall_0 = \{1, 2, \ldots, m\} \cap 2^N$ (i.e., subsets of $\{1,2,\ldots,m\}$) is finite there exists a positive integer n_0 such that $|\lambda_n(A) - \lambda(A)| < \epsilon/4, \forall n \geq n_0$ and $A \in \forall_0$. Take $q \in 2^N, q = (q_1, q_2, \ldots, q_m, q_{m+1}, \ldots)$ and put $q' = (q_1, q_2, \ldots, q_m, 0, 0, \ldots), q'' = (0, 0, \ldots, 0, q_{m+1}, q_{m+2}, \ldots)$. Then $q'' + q' = q$ and $q'' \in V$. For $n \geq n_0$,

$$|\lambda_n(q) - \lambda(q)| \leq |\lambda_n(q') - \lambda(q')| + |\lambda_n(q'') - \lambda(q'')|$$

$$\leq \epsilon/4 + |\lambda_n(q')| + |\lambda(q'')| \leq \epsilon/4 + \epsilon/4 + \epsilon/4 < \epsilon.$$
This proves the result.

A subset \(A \subseteq M_\mu(X, E') \) is said to be uniformly tight if, given \(\varepsilon > 0 \), there exists a compact subset \(K \subseteq X \) such that \(|\mu|(X \setminus K) < \varepsilon, \forall \mu \in A \).

Lemma 2. A subset \(A \subseteq M_\mu(X, E') \) is \(\beta_0 \)-equicontinuous iff \(A \) is uniformly tight and norm-bounded.

Proof. Let \(A \) be norm-bounded and uniformly tight. Put \(\alpha_0 = \sup \{ ||\mu|| : \mu \in A \} \). Since \(\beta_0 \)-topology is the finest locally convex topology, coinciding with compact-open topology on norm-bounded subsets of \(C_b(X, E) \), it is enough to prove that for any \(k > 0 \) there exists a compact subset \(K \subseteq X \) and some \(\eta > 0 \) such that

\[
Z = \{ f \in C_b(X, E) : ||f|| \leq k, ||f||_K \leq \eta \}
\]

\[
\subseteq \{ g \in C_b(X, E) : |\mu(g)| \leq 1, \forall \mu \in A \}.
\]

By uniform tightness of \(A \), there exists a compact \(K \subseteq X \) such that \(|\mu|(X \setminus K) < 1/(2k + 1), \forall \mu \in A \). Take \(\eta = 1/2(1 + \alpha_0) \). For an \(f \in Z \) and \(\mu \in A \),

\[
|\mu(f)| \leq \int ||f|| d|\mu| = \int_K ||f|| d|\mu| + \int_{X \setminus K} ||f|| d|\mu|
\]

\[
\leq \alpha_0/2(1 + \alpha_0) + k/(2k + 1) \leq 1.
\]

This proves \(A \) is \(\beta_0 \)-equicontinuous.

Conversely, if \(A \subseteq M_\mu(X, E') \) is \(\beta_0 \)-equicontinuous then \(A \) is norm-bounded, since \(\beta_0 \leq ||\cdot|| \) on \(C_b(X, E) \). Fix \(\varepsilon > 0 \). There exists a scalar-valued function \(\varphi \) on \(X \) such that

\[
\{ f \in C_b(X, E) : ||f\varphi|| \leq 1 \} \subseteq \{ g \in C_b(X, E) : |\mu(g)| \leq 1, \forall \mu \in A \}.
\]

Take a compact set \(K \), in \(X \), with the property that \(K \supseteq \{ x \in X : |\varphi(x)| \geq \varepsilon \} \). If \(|\mu|(X \setminus K) > \varepsilon \), for some \(\mu \in A \), then, by using the fact that \(\mu_x \in M_\mu(X) \), \(\forall x \in X \), we get a finite disjoint collection \(\{ C_i \} \) of compact subsets of \(X \setminus K \) and \(\{ x_i \} \subseteq E \), with \(||x_i|| \leq 1, \forall i \), such that \(|\sum \langle \mu(C_i), x_i \rangle| > \varepsilon \). This means there is a collection \(\{ f_i \} \subseteq C_b(X) \), \(0 \leq f_i \leq 1, \forall i \), supports of \(f_i \)'s mutually disjoint, \(f_i = 0 \) on \(K \), \(\forall i \), such that \(|\mu(f)| > \varepsilon \), where \(f = \sum f_i \otimes x_i \). Now \(||f\varphi|| \leq \varepsilon \) implies \(|\mu(f)| \leq \varepsilon \), which is a contradiction. This proves the result.

Lemma 3. Let \(A \) be a norm-bounded, relatively countably compact subset of \((F', \sigma(F', F)) \), where \(F = C_b(X, E) \) and \(F' = M_\mu(X, E') \), and assume that \(X \) is a \(P \)-space. Then \(A \) is equicontinuous on \((F, \beta_0) \).

Proof. First we note that \(\mu \in M_\mu(X) \) implies \(|\mu| \in l^1(X) \), since \(X \) is a \(P \)-space [12, p. 467]. Given \(\varepsilon > 0 \), we prove the existence of a finite subset \(D \subseteq X \) such that \(|\mu|(X \setminus D) < \varepsilon, \forall \mu \in A \). Suppose this is not true. Take a \(\mu_1 \in A \) and a finite set \(C_1 \subseteq X \) such that \(|\mu_1|(X \setminus C_1) < \varepsilon/2 \). We get a \(\mu_2 \in A \) such that \(|\mu_2|(X \setminus C_1) > \varepsilon \). Take a finite subset \(C_2 \) of \(X \), \(C_2 \supseteq C_1 \) such that
\[|\mu_2|(X \setminus C_2) < \varepsilon/2. \]
Continuing this process we get a sequence \(\{\mu_n\} \subset A \), and an increasing sequence \(\{C_n\} \) of finite subsets of \(X \) such that \(|\mu_n|(X \setminus C_i) < \varepsilon/2 \) for \(i \geq n \) and \(|\mu_n|(X \setminus C_i) \geq \varepsilon \) for \(1 \leq i < n - 1 \). Putting \(C_0 = \emptyset \) and \(D_i = C_i \setminus C_{i-1} \) (\(i = 1, 2, \ldots \)), we get

\[|\mu_n|(D_n) = |\mu_n|(C_n \setminus C_{n-1}) = |\mu_n|((X \setminus C_{n-1}) \setminus (X \setminus C_n)) \geq \varepsilon/2. \]

Since \(\{D_n\} \) is a disjoint sequence of finite subsets of \(X \), for every \(n \), there exists a finite partition \(\{A_i^{(n)}: 1 \leq i \leq p_n\} \) of \(D_n \) and points \(\{x_i^{(n)}: 1 \leq i \leq p_n\} \) in the closed unit ball of \(E \) such that

\[\sum_{i=1}^{p_n} \left| \mu_n(x_i^{(n)} \otimes x_{A_i^{(n)}}) \right| \geq \varepsilon/2. \]

Since \(X \) is a \(P \)-space and \(\{A_i^{(n)}: 1 \leq i \leq p_n\} \) is a countable collection of disjoint finite subsets of \(X \), \(\exists \) a disjoint collection of clopen subsets \(\{U_i^{(n)}: 1 \leq i \leq p_n\} \) of \(A_i^{(n)} \) and \(\mu_n(x_i^{(n)} \otimes x_{U_i^{(n)}}) = \mu_n(x_i^{(n)} \otimes x_{U_i^{(n)}}) \), \(\forall n \), and \(\forall i \) (this follows from the regularity of \(x_i^{(n)}, \mu \in \mathcal{M}(X, E') \), \(x \in E \), and the fact that \(X \) is a \(P \)-space). Putting \(f_n = \sum_{i=1}^{p_n} x_i^{(n)} \otimes x_{U_i^{(n)}} \), we get \(|\mu_n(f_n)| > \varepsilon/4 \), \(\forall n \) and \(f_n \in C_b(X, E) \). For any subset \(M \subset N \), \(\sum_{n \in M} f_n = f_M \in C_b(X, E) \) and \(||f_M|| \leq 1 \) (here we again are using the fact that \(X \) is a \(P \)-space). The space \(H = \{f_M: M \subset N\} \) with topology induced by \(\alpha(F, F') \), contains \(\{f_P: P \subset N, P \text{ finite}\} \) as a dense subset—to prove this, fix \(M \subset N \) and put \(g_m = \sum_{i=1}^{2m} x_i^{(n)} \otimes x_{U_i^{(n)}} \); this gives \(|\mu(f_M - g_m)| \leq |\mu|(||f_M - g_m||) \to 0 \), by the dominated convergence theorem, \(\forall \mu \in F' \). Also \(A \), considered as a set of continuous functions on \(H \), with the topology of pointwise convergence, is relatively countably compact, and so by [7] there exists a subsequence of \(\{\mu_n\} \), which again we denote by \(\{\mu_n\} \), such that \(\{\mu_n\} \) is convergent pointwise on \(H \). Define \(\lambda_n: 2^N \to \mathbb{K} \), \(\lambda_n(M) = \mu_n(f_M) \). It is easy to verify that \(\lambda_n \)'s are countably additive and \(\lim \lambda_n(M) = \lambda(M) \) exists \(\forall M \subset N \). By Lemma 1, \(\lambda_n \to \lambda \) uniformly on \(2^N \). Choose \(n_0 \in N \) so large that \(||\lambda_n()|| < \varepsilon/10 \) and \(\forall P \in 2^N, |\lambda_n(P) - \lambda(P)| < \varepsilon/10, \forall n \geq n_0 \). In particular, \(|\lambda_n((n_0)) - \lambda((n_0))| < \varepsilon/10 \), and so \(|\lambda_n((n_0))| < \varepsilon/5 \), i.e., \(|\mu_{n_0}(f_{n_0})| < \varepsilon/5 \). This contradicts \(|\mu_{n_0}(f_{n_0})| > \varepsilon/4, \forall n \). Using Lemma 2, we get the result.

Example 4. The condition that \(A \), in Lemma 3, be norm-bounded is essential. Let \(E \) be the subspace of \(l_1 \) over reals, consisting of sequences with only finite number of nonzero components with induced norm. In \(E' = l_{\infty}' \), for every positive integer \(n \), let \(y_n \) have all components 0 except \(n \)th which is equal to \(n \). Put \(A = \{y_n\} \). Now \(y_n \to 0 \) in \((E', \sigma(E', E)) \), but, being unbounded, is not equiuniform. Thus \(E \) is Mackey but not strongly Mackey. Take \(X = \{x_0\} \), a one-point set. Then \((C_b(X, E), \beta_0) \) is isometric isomorphic to \(E \). Thus Lemma 3 cannot hold without the assumption of norm-boundedness on \(A \).

Theorem 5. If \(X \) is a \(P \)-space and \(E \) a normed space, then \((C_b(X, E), \beta_0) \) is...
Mackey. If, in addition, E is complete (i.e., E is a Banach space) then
\((C_b(X,E),\beta_0)\) is strongly Mackey.

Proof. Let A be an absolutely convex, compact subset of \((F',\sigma(F',F))\),
where \(F = (C_b(X,E),\beta_0)\), \(F' = M_t(X,E')\). Since the bounded subsets of
\((C_b(X,E),\beta_0)\) are norm-bounded, the strong topology on \(M_t(X,E')\) is
the norm topology and so A is norm-bounded [8, 5.1, p. 141]. By Lemma 3, A is
equicontinuous. If E is a Banach space, then \(G = (C_b(X,E),\|\cdot\|)\) is also a
Banach space and \(M_t(X,E') \subseteq G'\). Thus if A is a relatively countably
compact subset of \((M_t(X,E'),\sigma(M_t(X,E'))\), \(C_b(X,E))\), then A is a relatively
countably compact subset of \((G',\sigma(G',G))\) and so is norm-bounded. Lemma
3 now gives the result. This completes the proof.

Remark 6. Our proof is different from the usual proof that the function
space be Mackey; the usual proof starts out with “gliding hump” argument
and then uses \(l_\infty\) trick [11]. This theorem generalizes the main result of [11].

We are grateful to the referee for making many useful suggestions.

References

841–853. MR 50 # 961.

2. L. Gillman and M. Jerison, Rings of continuous functions, Van Nostrand, Princeton, N.J.,
1960. MR 22 # 6994.

51 # 1364.

5. J. L. Kelley, I. Namioka et al., Linear topological spaces, Van Nostrand, Princeton, N.J.,
1963. MR 29 # 3851.

7. J. D. Pryce, A device of R. J. Whitley’s applied to pointwise compactness in spaces of continuous

9. F. D. Sentilles, Bounded continuous functions on a completely regular space, Trans. Amer.

10. V. S. Varadarajan, Measures on topological spaces, Mat. Sb. 55 (97) (1961), 35–100; English

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF IOWA, IOWA CITY, IOWA 52242

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WISCONSIN, SHEBOYGAN
COUNTY CENTER, SHEBOYGAN, WISCONSIN 53801