Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A generalization of the arithmetic-geometric means inequality


Authors: A. M. Fink and Max Jodeit
Journal: Proc. Amer. Math. Soc. 61 (1976), 255-261
MSC: Primary 26A86
DOI: https://doi.org/10.1090/S0002-9939-1976-0427564-2
MathSciNet review: 0427564
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that the arithmetic mean of $ {x_1}{w_1}, \ldots ,{x_n}{w_n}$ exceeds the geometric mean of $ {x_1}, \ldots ,{x_n}$ unless all the $ x$'s are equal, where $ {w_1}, \ldots ,{w_n}$ depend on $ {x_1}, \ldots ,{x_n}$ and satisfy $ 0 \leqslant {w_i} < 1$ unless $ {x_i} = \min {x_k}$. This inequality is then applied to an integral inequality for functions $ y$ defined on $ [0,\;\infty )$ with $ {y^{(k)}}$ convex and 0 at 0 for $ 0 \leqslant k < n$.


References [Enhancements On Off] (What's this?)

  • [1] T. A. Burton, Noncontinuation of solutions of differential equations of order $ N$, Proc. Amer. Math. Soc. (to appear).
  • [2] A. M. Fink, Mean value inequalities, SIAM J. Math. Anal. (submitted). MR 0499039 (58:17011)
  • [3] G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, 2nd ed., Cambridge Univ. Press, London and New York, 1952. MR 13, 727. MR 0046395 (13:727e)
  • [4] D. S. Mitrinović, Analytic inequalities, Die Grundlehren der math. Wissenschaften, Band 165, Springer-Verlag, Berlin and New York, 1970. MR 43 #448. MR 0274686 (43:448)
  • [5] C. L. Siegel, The trace of totally positive and real algebraic integers, Ann. of Math. (2) 46 (1945), 302-312. MR 6, 257. MR 0012092 (6:257a)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 26A86

Retrieve articles in all journals with MSC: 26A86


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1976-0427564-2
Keywords: Inequalities, arithemetic-geometric mean inequality, convex functions
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society