Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



A strong type of regularity for the $ {\rm PWB}$ solution of the Dirichlet problem

Author: D. H. Armitage
Journal: Proc. Amer. Math. Soc. 61 (1976), 285-289
MSC: Primary 31B20
MathSciNet review: 0427658
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ {H_f}$ be the Perron-Wiener-Brelot solution of the Dirichlet problem for a resolutive function $ f$ on the boundary $ \partial \Omega $ of a bounded domain $ \Omega $ in $ {E^n}$. A point $ y$ of $ \partial \Omega $ will be called strongly regular if $ {H_f}(x) \to f(y)(x \to y)$ whenever $ f$ is resolutive and continuous at $ y$. Necessary and sufficient conditions for strong regularity are given.

References [Enhancements On Off] (What's this?)

  • [1] Marcel Brelot, Sur la mesure harmonique et le problème de Dirichlet, Bull. Sci. Math. (2) 69 (1945), 153–156 (French). MR 0016187
  • [2] -, Éléments de la théorie classique du potentiel, Centre de Documentation Universitaire, Paris, 1969.
  • [3] Nicolaas du Plessis, An introduction to potential theory, Hafner Publishing Co., Darien, Conn.; Oliver and Boyd, Edinburgh, 1970. University Mathematical Monographs, No. 7. MR 0435422
  • [4] L. L. Helms, Introduction to potential theory, Pure and Applied Mathematics, Vol. XXII, Wiley-Interscience A Division of John Wiley & Sons, New York-London-Sydney, 1969. MR 0261018
  • [5] John T. Kemper, A boundary Harnack principle for Lipschitz domains and the principle of positive singularities, Comm. Pure Appl. Math. 25 (1972), 247–255. MR 0293114
  • [6] Ü. Kuran, Harmonic majorizations in half-balls and half-spaces, Proc. London Math. Soc. (3) 21 (1970), 614–636. MR 0315148

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 31B20

Retrieve articles in all journals with MSC: 31B20

Additional Information

Keywords: Dirichlet problem, regular boundary point
Article copyright: © Copyright 1976 American Mathematical Society