Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A strong type of regularity for the $ {\rm PWB}$ solution of the Dirichlet problem


Author: D. H. Armitage
Journal: Proc. Amer. Math. Soc. 61 (1976), 285-289
MSC: Primary 31B20
DOI: https://doi.org/10.1090/S0002-9939-1976-0427658-1
MathSciNet review: 0427658
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ {H_f}$ be the Perron-Wiener-Brelot solution of the Dirichlet problem for a resolutive function $ f$ on the boundary $ \partial \Omega $ of a bounded domain $ \Omega $ in $ {E^n}$. A point $ y$ of $ \partial \Omega $ will be called strongly regular if $ {H_f}(x) \to f(y)(x \to y)$ whenever $ f$ is resolutive and continuous at $ y$. Necessary and sufficient conditions for strong regularity are given.


References [Enhancements On Off] (What's this?)

  • [1] M. Brelot, Sur la mesure harmonique et le problème de Dirichlet, Bull. Sci. Math. (2) 69 (1945), 153-156. MR 7, 522. MR 0016187 (7:522a)
  • [2] -, Éléments de la théorie classique du potentiel, Centre de Documentation Universitaire, Paris, 1969.
  • [3] N. du Plessis, An introduction to potential theory, Oliver and Boyd, Edinburgh, 1970. MR 0435422 (55:8382)
  • [4] L. L. Helms, Introduction to potential theory, Interscience, New York, 1969. MR 41 #5638. MR 0261018 (41:5638)
  • [5] J. T. Kemper, A boundary Harnack principle for Lipschitz domains and the principle of positive singularities, Comm. Pure Appl. Math. 25 (1972), 247-255. MR 45 #2193. MR 0293114 (45:2193)
  • [6] Ü. Kuran, Harmonic majorizations in half-balls and half-spaces, Proc. London Math. Soc. (3) 21 (1970), 614-636. MR 0315148 (47:3697)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 31B20

Retrieve articles in all journals with MSC: 31B20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1976-0427658-1
Keywords: Dirichlet problem, regular boundary point
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society