Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Rotundity and smoothness in conjugate spaces


Author: M. A. Smith
Journal: Proc. Amer. Math. Soc. 61 (1976), 232-234
MSC: Primary 46B10
DOI: https://doi.org/10.1090/S0002-9939-1976-0435807-4
MathSciNet review: 0435807
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that the James space $ J$ admits an equivalent norm such that its third conjugate space is rotund.


References [Enhancements On Off] (What's this?)

  • [1] M. M. Day, Normed linear spaces, 3rd ed., Ergebnisse Math. Grenzgebiete, Band, 21, Springer-Verlag, New York, 1973. MR 49 #9588. MR 0344849 (49:9588)
  • [2] D. W. Dean, The equation $ L(E,\;{X^{{\ast}{\ast}}}) = L{(E,\;X)^{{\ast}{\ast}}}$ and the principle of local reflexivity, Proc. Amer. Math. Soc. 40 (1973), 146-148. MR 48 #2735. MR 0324383 (48:2735)
  • [3] J. Diestel, Geometry of Banach spaces--Selected topics, Lecture Notes in Math., vol. 485, Springer-Verlag, Berlin and New York, 1975. MR 0461094 (57:1079)
  • [4] J. Dixmier, Sur un théorème de Banach, Duke Math. J. 15 (1948), 1057-1071. MR 10, 306. MR 0027440 (10:306g)
  • [5] J. R. Giles, A non-reflexive Banach space has non-smooth third conjugate space, Canad. Math. Bull. 17 (1974), 117-119. MR 50 #5429. MR 0352943 (50:5429)
  • [6] R. C. James, A non-reflexive Banach space isometric with its second conjugate space, Proc. Nat. Acad. Sci. U.S.A. 37 (1951), 174-177. MR 13, 356. MR 0044024 (13:356d)
  • [7] J. Lindenstrauss and H. P. Rosenthal, The $ {\mathcal{L}_p}$ spaces, Israel J. Math. 7 (1969), 325-349. MR 42 #5012. MR 0270119 (42:5012)
  • [8] J. Rainwater, A non-reflexive Banach space has non-smooth third conjugate space (unpublished).
  • [9] M. A. Smith, A smooth, non-reflexive second conjugate space, Bull. Austral. Math. Soc. 15 (1976), 129-131. MR 0423056 (54:11039)
  • [10] F. Sullivan, Geometrical properties determined by the higher duals of a Banach space (preprint). MR 0458124 (56:16327)
  • [11] V. Zizler, Some notes on various rotundity and smoothness properties of separable Banach spaces, Comment. Math. Univ. Carolinae 10 (1969), 195-206. MR 39 #7401. MR 0246095 (39:7401)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46B10

Retrieve articles in all journals with MSC: 46B10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1976-0435807-4
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society