Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Distribution of zeros and limit behavior of solutions of differential equations


Author: H. Guggenheimer
Journal: Proc. Amer. Math. Soc. 61 (1976), 275-279
MSC: Primary 34C10
DOI: https://doi.org/10.1090/S0002-9939-1976-0473335-0
MathSciNet review: 0473335
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Elementary arguments of projective geometry are used to obtain information about the limit behavior of solutions of ordinary linear differential equations if certain distributions of zeros do not occur.


References [Enhancements On Off] (What's this?)

  • [1] J. H. Barrett, Oscillation theory of ordinary linear differential equations, Advances in Math. 3 (1969), 415-509. MR 41 #2113. MR 0257462 (41:2113)
  • [2] G. D. Birkhoff, On the solutions of ordinary linear homogeneous differential equations of the third order, Ann. of Math. 12 (1910-1911), 103-127. MR 1503560
  • [3] H. Guggenheimer, Homogeneous linear differential equations with only periodic solutions, Israel J. Math. 9 (1971), 49-52. MR 42 #6352. MR 0271469 (42:6352)
  • [4] -, Geometric theory of differential equations. IV: Two-point boundary value problems of linear equations, Rend. Mat. (6) 5 (1972), 237-250. MR 0454127 (56:12378)
  • [5] M. Hanan, Oscillation criteria for third-order linear differential equations, Pacific J. Math. 11 (1961), 919-944. MR 26 #2695. MR 0145160 (26:2695)
  • [6] F. Neuman, Geometrical approach to linear differential equations of the $ n$-th order, Rend. Mat. (6) 5 (1972), 579-602. MR 48 #2493. MR 0324141 (48:2493)
  • [7] J. R. Ridenhour and T. L. Sherman, Conjugate points for fourth order linear differential equations, SIAM J. Appl. Math. 22 (1972), 599-603. MR 46 #2151. MR 0303009 (46:2151)
  • [8] B. Segre, Alcune proprietà differenziali in grande delle curve chiuse sghembe. Rend. Mat. (6) 1 (1968), 237-297. MR 39 #4787. MR 0243466 (39:4787)
  • [9] E. J. Wilczynski, Projective differential geometry of curves and ruled surfaces, Teubner, Leipzig, 1905; Chelsea, New York.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 34C10

Retrieve articles in all journals with MSC: 34C10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1976-0473335-0
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society