ON CURVILINEAR CLUSTER SETS ON OPEN Riemann Surfaces

Mikio Niimura

Abstract. Every boundary point of the Kerékjártó-Stoïlow compactification of an open Riemann surface is the limit of a Jordan arc with this property: for every nonempty continuum in the extended complex plane there is a holomorphic function on the surface having the continuum as its cluster set along the arc.

Let \(R \) be an open Riemann surface and \(\{R_n\}_{n=1}^{\infty} \) a regular exhaustion of \(R \). Let \(R^* \) denote the Kerékjártó-Stoïlow compactification of \(R \) and \(\{G_n\}_{n=1}^{\infty} \) a determinant sequence of \(e \in \Delta \) satisfying \(\partial G_n \subset \partial R_n \), where \(\Delta = R^* - R \) and \(\partial X \) means the relative boundary of \(X \subset R \) with respect to \(R \).

The approximation theorem of Bishop (cf. [2]), which is applied in the proof of our Theorem, is stated as follows:

Let \(R' \) be an open Riemann surface and \(K' \) a compact subset with the property that no nonempty component of \(R' - K' \) is relatively compact. Let \(g' \) be a continuous function on \(K' \) which is holomorphic at interior points. Then for any \(\epsilon' > 0 \) there exists a holomorphic function \(f' \) on \(R' \) for which \(|f' - g'| < \epsilon' \) on \(K' \).

In this paper, we shall show the following:

Theorem. For each \(e \in \Delta \) and any nonempty continuum \(K \) in the Riemann sphere \(S \), there exist a holomorphic function \(f \) on \(R \) and a Jordan arc \(\gamma \) in \(R \) converging to \(e \) such that \(C_\gamma(f,e) = K \), where \(C_\gamma(f,e) \) denotes the cluster set of \(f \) on \(\gamma \).

Proof. Fix the chordal metric \(d \) on \(S \). Let \(U_n \) be the \(1/n \)-neighborhood of \(K \) relative to \(d \). Evidently \(U_n \) is both open and connected. Let \(0 = t_0 < t_1 < \cdots < t_n < \cdots, t_n \to 1 \), and for \(n \geq 1 \) let \(g_n: [t_{n-1}, t_n] \to U_n - \{\infty\} \) be continuous such that

1. no point of \(K \) is at a \(d \)-distance of more than \(1/n \) from the image of \(g_n \),
2. for \(n \geq 2 \), \(g_n(t_{n-1}) = g_{n-1}(t_{n-1}) \).

Then \(\bigcup g_n \) defines a continuous \(g: [0, 1) \to S \) such that \(\bigcap_{1 \leq k < 1} g([t, 1])) = K \), where the bar implies closure.

Received by the editors January 5, 1976 and, in revised form, May 25, 1976.
Key words and phrases. Bishop's approximation theorem, open Riemann surface, holomorphic function, curvilinear cluster set, continuum.

© American Mathematical Society 1977

117
It is easy to see that there is an arc \(\gamma \) defined by a topological \(h: [0,1) \rightarrow R \) such that \(h(t) \rightarrow e \) as \(t \rightarrow 1, h([t_{n-1}, t_n]) \subset \overline{R}_{n+1} - R_n \), and \(\gamma \cap \partial G_n = \{h(t_{n-1})\} \). Define \(\varphi = g \circ h^{-1} \) on \(\gamma \subset R \) and extend \(\varphi \) by Tietze’s theorem to a continuous complex-valued function \(\varphi \) on \(R \). This is possible since \(g \) is never \(\infty \).

We may assume, without loss of generality, that \(\varphi = 0 \) on \(\overline{R}_1 \). Set \(\varphi_1 = 0 \) on \(R \) and \(\psi_2 = \varphi - \varphi_1 \) on \(\overline{R}_2 \); then from the approximation theorem of Bishop, there exists a holomorphic function \(f_2 \) on \(R \) for which \(|f_2 - \psi_2| < 2^{-3} \) on \(\overline{R}_1 \cup h([0, t_1]) \).

Next let \(\lambda(t) \) \((t_1 \leq t < 1) \) be a continuous function with the property that \(\lambda(t_1) = \psi_2 \circ h(t_1), \lambda(t_2) = f_2 \circ h(t_2), |f_2 \circ h - \lambda| < 2^{-2} \) on \([t_1, t_2] \) and \(\lambda = f_2 \circ h \) on \([t_2, 1]\). Let \(\varphi_2 \) be a continuous function on \(R \) such that \(\varphi_2 = \psi_2 \) on \(\overline{R}_2 \) and \(\varphi_2 = \lambda \circ h^{-1} \) on \((R - R_2) \cap \gamma \). Then we see that \(|f_2 - \varphi_2| < 2^{-2} \) on \(\overline{R}_1 \cup \gamma, \varphi_2 = f_2 \) on \((R - R_3) \cap \gamma \) and \(\varphi_2 = \varphi - \varphi_1 \) on \(\overline{R}_2 \).

By mathematical induction, we have a sequence \(\{f_n\}_{n=2}^\infty \) of holomorphic functions on \(R \) and a sequence \(\{\varphi_n\}_{n=2}^\infty \) of continuous functions on \(R \) with the property that \(|f_n - \varphi_n| < 2^{-n} \) on \(\overline{R}_{n-1} \cup \gamma, \varphi_n = f_n \) on \((R - R_{n+1}) \cap \gamma \) and \(\varphi_n = \varphi - (\varphi_1 + \varphi_2 + \cdots + \varphi_{n-1}) \) on \(\overline{R}_n \). Since \(\varphi_n = 0 \) on \(\overline{R}_{n-1}, \sum_{n=2}^\infty \varphi_n \) converges on \(R \) and \(\varphi = \sum_{n=2}^\infty \varphi_n \) on \(R \). Since \(|f_n| < 2^{-n} \) on \(\overline{R}_{n-1} \), \(\sum_{n=2}^\infty f_n \) converges uniformly on every compact subset of \(R \), and hence \(f = \sum_{n=2}^\infty f_n \) is holomorphic on \(R \).

Now for any \(\varepsilon > 0 \), there exists an \(N = N(\varepsilon) \) such that \(\sum_{n=N}^\infty |f_n - \varphi_n| < \varepsilon \) on \(\gamma \). Further since \(\sum_{n=2}^{N-1} |f_n - \varphi_n| = 0 \) on \((R - R_N) \cap \gamma \), we have \(|f - \varphi| < \varepsilon \) on \((R - R_N) \cap \gamma \). Since \(f - \varphi \rightarrow 0 \) along \(\gamma \), we see that \(f(h(t)) - g(t) = f(h(t)) - \varphi(h(t)) \rightarrow 0 \) as \(t \rightarrow 1 \). Clearly, the cluster set of \(f \) along \(\gamma \) is the cluster set of \(g \) along \([0,1]\), which we have seen is \(K \).

REFERENCES