Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

Remote Access
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)


Polynomial density in Bers spaces

Author: Jacob Burbea
Journal: Proc. Amer. Math. Soc. 62 (1977), 89-94
MSC: Primary 30A98
MathSciNet review: 0425139
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let D be a bounded Jordan domain such that $ \smallint \;\smallint {\;_D}\lambda _D^{2 - q}\;dx\;dy\; < \infty $ for $ q > 1$. Here $ {\lambda _D}(z)$ is the Poincaré metric for D. Define $ A_q^p(D)$, the Bers space, to be the Fréchet space of holomorphic functions f on D, such that $ \left\Vert f \right\Vert _{q,p}^p = \smallint \;\smallint {\;_D}\lambda _D^{2 - qp}\vert f{\vert^p}\;dx\;dy$ is finite, $ 0 < p < \infty ,qp > 1$. It is well known that the polynomials are dense in $ A_q^p(D)$ for $ qp \geqslant 2$. We show that they are dense in $ A_q^p(D)$ for $ qp > 1$ irrespective whether the boundary of D is rectifiable or not.

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 30A98

Retrieve articles in all journals with MSC: 30A98

Additional Information

PII: S 0002-9939(1977)0425139-3
Keywords: Bers spaces, Poincaré metric, polynomial density
Article copyright: © Copyright 1977 American Mathematical Society

Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia