Polynomial density in Bers spaces

Author:
Jacob Burbea

Journal:
Proc. Amer. Math. Soc. **62** (1977), 89-94

MSC:
Primary 30A98

MathSciNet review:
0425139

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let *D* be a bounded Jordan domain such that for . Here is the Poincaré metric for *D*. Define , the Bers space, to be the Fréchet space of holomorphic functions *f* on *D*, such that is finite, . It is well known that the polynomials are dense in for . We show that they are dense in for irrespective whether the boundary of *D* is rectifiable or not.

**[1]**Lipman Bers,*Automorphic forms and Poincaré series for infinitely generated Fuchsian groups*, Amer. J. Math.**87**(1965), 196–214. MR**0174737****[2]**Lipman Bers,*A non-standard integral equation with applications to quasiconformal mappings*, Acta Math.**116**(1966), 113–134. MR**0192046****[3]**Peter L. Duren,*Theory of 𝐻^{𝑝} spaces*, Pure and Applied Mathematics, Vol. 38, Academic Press, New York-London, 1970. MR**0268655****[4]**C. J. Earle and A. Marden,*Projections to automorphic functions*, Proc. Amer. Math. Soc.**19**(1968), 274–278. MR**0224813**, 10.1090/S0002-9939-1968-0224813-6**[5]**G. H. Hardy and J. E. Littlewood,*Some properties of fractional integrals. II*, Math. Z.**34**(1932), no. 1, 403–439. MR**1545260**, 10.1007/BF01180596**[6]**Lars Inge Hedberg,*Weighted mean square approximation in plane regions, and generators of an algebra of analytic functions*, Ark. Mat.**5**(1965), 541–552 (1965). MR**0219729****[7]**Marvin I. Knopp,*A corona theorem for automorphic forms and related results*, Amer. J. Math.**91**(1969), 599–618. MR**0251219****[8]**Thomas A. Metzger,*On polynomial approximation in 𝐴_{𝑞}(𝐷)*, Proc. Amer. Math. Soc.**37**(1973), 468–470. MR**0310260**, 10.1090/S0002-9939-1973-0310260-7**[9]**Thomas A. Metzger,*On polynomial density in 𝐴_{𝑞}(𝐷)*, Proc. Amer. Math. Soc.**44**(1974), 326–330. MR**0340623**, 10.1090/S0002-9939-1974-0340623-6**[10]**Mark Sheingorn,*Poincaré series of polynomials bounded away from zero on a fundamental region*, Amer. J. Math.**95**(1973), 729–749. MR**0344455****[11]**J. L. Walsh,*Interpolation and approximation by rational functions in the complex domain*, Fourth edition. American Mathematical Society Colloquium Publications, Vol. XX, American Mathematical Society, Providence, R.I., 1965. MR**0218588**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
30A98

Retrieve articles in all journals with MSC: 30A98

Additional Information

DOI:
http://dx.doi.org/10.1090/S0002-9939-1977-0425139-3

Keywords:
Bers spaces,
Poincaré metric,
polynomial density

Article copyright:
© Copyright 1977
American Mathematical Society