Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Monotone and oscillatory solution of $ y\sp{(n)}+py=0$


Author: W. J. Kim
Journal: Proc. Amer. Math. Soc. 62 (1977), 77-82
MSC: Primary 34C10
DOI: https://doi.org/10.1090/S0002-9939-1977-0425256-8
MathSciNet review: 0425256
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Monotone and oscillatory behaviors of the solutions with the property that $ y(x)/{x^2} \to 0$ as $ x \to \infty $ or $ y(x)/x \to 0$ as $ x \to \infty $ are discussed. For example, it is shown that every nonoscillatory solution y, such that $ y(x)/x \to 0$ as $ x \to \infty $, monotonically tends to zero as $ x \to \infty $, provided n is odd, $ p \geqq 0$, and $ {\smallint ^\infty }{x^{n - 1}}p(x)dx = \infty $.


References [Enhancements On Off] (What's this?)

  • [1] G. V. Anan'eva and V. I. Balaganskiĭ, Oscillation of the solutions of certain differential equations of high order, Uspehi Mat. Nauk 14 (1959), no. 1 (85), 135-140. (Russian) MR 21 #1428. MR 0102638 (21:1428)
  • [2] P. Hartman and A. Wintner, Linear differential and difference equations with monotone solutions, Amer. J. Math. 75 (1953), 731-743. MR 15, 221. MR 0057404 (15:221f)
  • [3] A. Kneser, Untersuchen über die reellen Nullstellen der Integrale linearer Differentialgleichungen, Math. Ann. 42 (1893), 409-435. MR 1510784
  • [4] V. A. Kondrat'ev, Oscillatory properties of solutions of the equation $ {y^{(n)}} + p(x)y = 0$, Trudy Moskov. Mat. Obšč. 10 (1961), 419-436. (Russian) MR 25 #5239. MR 0141842 (25:5239)
  • [5] W. Leighton, The detection of the oscillation of solutions of a second order linear differential equation, Duke Math. J. 17 (1950), 57-61. MR 11, 248; 871. MR 0032065 (11:248c)
  • [6] Z. Nehari, Non-oscillation criteria for n-th order linear differential equations, Duke Math. J. 32 (1965), 607-615. MR 32 #4338. MR 0186883 (32:4338)
  • [7] -, Disconjugate linear differential operators, Trans. Amer. Math. Soc. 129 (1967), 500-516. MR 36 #2860. MR 0219781 (36:2860)
  • [8] -, Disconjugacy criteria for linear differential equations, J. Differential Equations 4 (1968), 604-611. MR 38 #1329. MR 0233006 (38:1329)
  • [9] T. T. Read, Growth and decay of solutions of $ {y^{(2n)}} - py = 0$, Proc. Amer. Math. Soc. 43 (1974), 127-132. MR 49 #726. MR 0335948 (49:726)
  • [10] W. Simons, Monotonicity in some nonoscillation criteria for differential equations, J. Differential Equations 13 (1973), 124-126. MR 48 #11671. MR 0333346 (48:11671)
  • [11] I. M. Sobol', On the asymptotic behavior of the solutions of linear differential equations, Dokl. Akad. Nauk SSSR (N.S.) 61 (1948), 219-222. (Russian) MR 10, 40. MR 0025650 (10:40g)
  • [12] C. A. Swanson, Comparison and oscillation theory of linear differential equations, Academic Press, New York and London, 1968. MR 0463570 (57:3515)
  • [13] A. Wintner, A criterion of oscillatory stability, Quart. Appl. Math. 7 (1949), 115-117. MR 10, 456. MR 0028499 (10:456a)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 34C10

Retrieve articles in all journals with MSC: 34C10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1977-0425256-8
Keywords: Monotone and oscillatory solutions, asymptotic behavior, linear equations, ordinary, nth-order, real-valued continuous coefficients
Article copyright: © Copyright 1977 American Mathematical Society

American Mathematical Society