Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



On the trace of an idempotent in a group ring

Authors: Gerald H. Cliff and Sudarshan K. Sehgal
Journal: Proc. Amer. Math. Soc. 62 (1977), 11-14
MSC: Primary 16A26
MathSciNet review: 0427361
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let KG be the group ring of a polycyclic by finite group G over a field K of characteristic zero. It is proved that if $ e = \sum e(g)g$ is a nontrivial idempotent in KG then its trace $ e(1)$ is a rational number $ r/s,(r,s) = 1$, with the property that for every prime divisor p of s, G has an element of order p. This result is used to prove that if R is a commutative ring of characteristic zero, without nontrivial idempotents and G is a polycyclic by finite group such that no group order $ \ne 1$ is invertible in R, then RG has no nontrivial idempotents.

References [Enhancements On Off] (What's this?)

  • [1] A. Hattori, Rank element of a projective module, Nagoya J. Math. 25 (1965), 113-120. MR 31 #226. MR 0175950 (31:226)
  • [2] E. Formanek, Idempotents in Noetherian group rings, Canad. J. Math. 25 (1973), 366-369. MR 47 #5041. MR 0316494 (47:5041)
  • [3] M. Parmenter and S. Sehgal, Idempotent elements and ideals in group rings and the intersection theorem, Arch. Math. 24 (1972), 586-600. MR 49 #350. MR 0335569 (49:350)
  • [4] D. Passman, Infinite group rings, Dekker, New York, 1971. MR 47 #3500. MR 0314951 (47:3500)
  • [5] S. Sehgal, Certain algebraic elements in group rings, Arch. Math. 26 (1975), 139-143. MR 0369417 (51:5650)
  • [6] S. Sehgal and H. Zassenhaus, Group rings without non-trivial idempotents, Arch. Math. (to appear).
  • [7] A. Zalesskiĭ, On a problem of Kaplansky, Dokl. Akad. Nauk SSSR 203 (1972), 749-751 = Soviet Math. Dokl. 13 (1972), 449-452. MR 45 #6947. MR 0297895 (45:6947)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 16A26

Retrieve articles in all journals with MSC: 16A26

Additional Information

Keywords: Group rings, idempotent, trace
Article copyright: © Copyright 1977 American Mathematical Society

American Mathematical Society