CONTRACTIONS OF CONVEX SETS

ROBERT E. JAMISON

ABSTRACT. In this paper it is shown that, in a vector space over any ordered field, a noninfinitesimal contraction of a convex set K can be written as an intersection of translates of K.

A subset K of a vector space over a totally ordered field is called convex provided \(\lambda x + (1 - \lambda)y \) is in K whenever \(x \) and \(y \) are in K and \(\lambda \) is a scalar such that \(0 \leq \lambda \leq 1 \). Recalling that any ordered field \(F \) has characteristic zero, and hence contains a copy of the rational numbers, we shall say that a positive element \(\mu \) in \(F \) is infinitesimal if \(\mu < r \) for all positive rational numbers \(r \). (For further discussion and examples of ordered fields, see [1, Chapter 13].)

In this note we shall prove the following intersection theorem:

Theorem. Suppose K is a convex set in a vector space over an ordered field and \(\mu \) is a positive scalar less than 1. If \(\mu \) is not infinitesimal, then, for some set \(T \) of vectors,

\[\mu K = \bigcap \{ K + t : t \in T \} \]

It is easy to see that this result is plausible by considering either a square or a triangle in the plane, or in fact, any closed convex set. Difficulties arise, however, in the case of a convex set which includes only a portion of its boundary—say, the open unit disk together with the points of its circumference with rational x-coordinate.

Proof of the theorem. Let \(\mu \) be a noninfinitesimal positive scalar less than 1. Set \(P = \mu K \) and suppose \(q \) is a point not in \(P \). To prove the theorem, we must find a vector \(t \) such that \(P \subseteq K + t \) but \(q \notin K + t \). We distinguish two cases:

Case I. For all \(x \) in \(P \), we have \(q + \mu(x - q) \in P \). Let \(t = (1 - \mu^{-1})q \) so that

\[K + t = \mu^{-1}P + (1 - \mu^{-1})q = q + \mu^{-1}(P - q) \]

The vectors in \(P - q \) are all nonzero since \(q \) is not in \(P \). Thus \(q \) is not in \(K + t \). But if \(x \) is in \(P \), then \(q + \mu(x - q) \in P \) by the case hypothesis, so that \(x \in q + \mu^{-1}(P - q) = K + t \). Thus \(P \subseteq K + t \).

Received by the editors August 5, 1975 and, in revised form, March 24, 1976.

AMS (MOS) subject classifications (1970). Primary 52A05; Secondary 15A03, 12J15.

Key words and phrases. Contraction, convex set, intersection theorem, ordered field, translation, vector space.
Case II. There is a point p in P such that $q + \mu(p - q) \notin P$. Note that if $0 < \lambda < \mu$, then the segment from $q + \lambda(p - q)$ to $q + (p - q)$ contains $q + \mu(p - q)$. Since $q + (p - q) = p \in P$ and P is convex, the assumption on p forces $q + \lambda(p - q) \notin P$.

Now since μ is not infinitesimal, the positive integral powers of $1 - \mu$ become ultimately smaller than any preassigned positive rational number and, hence, smaller than any preassigned positive noninfinitesimal. Hence, $(1 - \mu)^n < \mu$ for some sufficiently large positive integer n. By the preceding note, $q + (1 - \mu)^n(p - q)$ cannot belong to P.

Let m be the smallest positive integer such that $q + (1 - \mu)m(p - q) \notin P$, and set $v = q + (1 - \mu)^m(p - q)$. (Here $v = p$ if $m = 1$.) Then v belongs to P. If x is any point in P, then $(1 - \mu)v + \mu x \in P$ since P is convex. Whence

$$x \in \mu^{-1}(P - (1 - \mu)v) = K + (1 - \mu^{-1})v.$$

Thus letting $t = (1 - \mu^{-1})v$, we have $P \subseteq K + t$. But

$$\mu q + (1 - \mu)v = q + (1 - \mu)(v - q) = q + (1 - \mu)^m(p - q) \notin P.$$

Consequently, q does not belong to

$$\mu^{-1}(P - (1 - \mu)v) = K + (1 - \mu^{-1})v = K + t.$$

This completes the proof of the theorem.

We conclude with a simple one-dimensional example to show that the result cannot be extended to include infinitesimal contractions. Let F be an ordered field which contains a positive infinitesimal element δ [1, p. 70]. Take the convex set $K = \{x \in F: x \geq 0 \text{ and for some integer } n, x \leq n\}$. If $\lambda \in F$ such that $\delta K \subseteq K - \lambda$, then $0 \in K - \lambda$ since $0 \in \delta K$. Thus $\lambda \in K$, so $\lambda + 1$ must also be in K. Whence $1 \in K - \lambda$. Thus 1 belongs to every translate of K containing δK, but 1 does not belong to δK since δ is infinitesimal.

Acknowledgement. The author would like to acknowledge the referee's suggestions of refinements in the proof of the theorem.

Bibliography