Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Number of odd binomial coefficients


Author: Heiko Harborth
Journal: Proc. Amer. Math. Soc. 62 (1977), 19-22
MSC: Primary 10A20
DOI: https://doi.org/10.1090/S0002-9939-1977-0429714-1
MathSciNet review: 0429714
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ F(n)$ denote the number of odd numbers in the first n rows of Pascal's triangle, and $ \theta = (\log 3)/\log 2)$. Then $ \alpha = \lim \sup F(n)/{n^\theta } = 1$, and $ \beta = \lim \inf F(n)/{n^\theta } = 0.812\;556\; \ldots .$


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 10A20

Retrieve articles in all journals with MSC: 10A20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1977-0429714-1
Article copyright: © Copyright 1977 American Mathematical Society