On majorization and normality of operators

Author:
Mehdi Radjabalipour

Journal:
Proc. Amer. Math. Soc. **62** (1977), 105-110

MSC:
Primary 47B20

MathSciNet review:
0430851

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Recent results of C. R. Putnam are used to find some conditions for normality of operators. The emphasis is on the classes of spectral operators (defined by N. Dunford) and *M*-hyponormal operators (defined by J. G. Stampfli).

**[1]**C. Apostol, R. G. Douglas, and C. Foiaş,*Quasi-similar models for nilpotent operators*, Trans. Amer. Math. Soc.**224**(1976), no. 2, 407–415. MR**0425651**, 10.1090/S0002-9947-1976-0425651-0**[2]**C. A. Berger and B. I. Shaw,*Hyponormality*:*its analytic consequences*(to appear).**[3]**R. G. Douglas,*On majorization, factorization, and range inclusion of operators on Hilbert space*, Proc. Amer. Math. Soc.**17**(1966), 413–415. MR**0203464**, 10.1090/S0002-9939-1966-0203464-1**[4]**C. K. Fong and M. Radjabalipour,*On quasi-affine transforms of spectral operators*, Michigan Math. J.**23**(1976), no. 2, 147–150. MR**0410458****[5]**C. R. Putnam,*Ranges of normal and subnormal operators*, Michigan Math. J.**18**(1971), 33–36. MR**0276810****[6]**C. R. Putnam,*Hyponormal contractions and strong power convergence*, Pacific J. Math.**57**(1975), no. 2, 531–538. MR**0380493****[7]**-,*Spectra and measure inequalities*(to appear).**[8]**M. Radjabalipour,*Ranges of hyponormal operators*, Illinois J. Math.**21**(1977), no. 1, 70–75. MR**0448140****[9]**Joseph G. Stampfli and Bhushan L. Wadhwa,*An asymmetric Putnam-Fuglede theorem for dominant operators*, Indiana Univ. Math. J.**25**(1976), no. 4, 359–365. MR**0410448****[10]**-,*On dominant operators*(to appear).**[11]**Bhushan L. Wadhwa,*𝑀-hyponormal operators*, Duke Math. J.**41**(1974), 655–660. MR**0346577**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
47B20

Retrieve articles in all journals with MSC: 47B20

Additional Information

DOI:
http://dx.doi.org/10.1090/S0002-9939-1977-0430851-6

Keywords:
Normal operator,
spectral operator,
*M*-hyponormal operator,
quasi-similarity

Article copyright:
© Copyright 1977
American Mathematical Society