Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Sets which can be extended to $ m$-convex sets

Author: Marilyn Breen
Journal: Proc. Amer. Math. Soc. 62 (1977), 124-128
MSC: Primary 52A20
MathSciNet review: 0430962
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let S be a compact set in $ {R^d},{T_0} \subseteq S$. Then $ {T_0}$ lies in an m-convex subset of S if and only if every finite subset of $ {T_0}$ lies in an m-convex subset of S. For S a closed set in $ {R^d}$ and $ {T_0} \subseteq S$, let $ {T_1} = \{ P:P$ a polytope in S having vertex set in $ {T_0},\dim P \leqslant d - 1\} $. If for every three members of $ {T_1}$, at least one of the corresponding convex hulls

$\displaystyle {\text{conv}}\{ {P_i} \cup {P_j}\} ,\quad 1 \leqslant i < j \leqslant 3.$

lies in S, then $ {T_0}$ lies in a 3-convex subset of S. An analogous result holds for m-convex sets provided ker $ S \ne \emptyset $.

References [Enhancements On Off] (What's this?)

  • [1] Marilyn Breen and David C. Kay, General decomposition theorems for m-convex sets in the plane, Israel J. Math. (to appear). MR 0417925 (54:5972)
  • [2] J. F. Lawrence, W. R. Hare, Jr. and John W. Kenelly, Finite unions of convex sets, Proc. Amer. Math. Soc. 34 (1972), 225-228. MR 45 #1040. MR 0291952 (45:1040)
  • [3] W. L. Stamey and J. M. Marr, Unions of two convex sets, Canad. J. Math. 15 (1963), 152-156. MR 26 #2946. MR 0145415 (26:2946)
  • [4] F. A. Valentine, Convex sets, McGraw-Hill, New York, 1964. MR 30 #503. MR 0170264 (30:503)
  • [5] -, A three point convexity property, Pacific J. Math. 7 (1957), 1227-1235. MR 20 #6071. MR 0099632 (20:6071)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 52A20

Retrieve articles in all journals with MSC: 52A20

Additional Information

Keywords: m-convex sets
Article copyright: © Copyright 1977 American Mathematical Society

American Mathematical Society